Math, asked by abhishek3195, 11 months ago

find the gcd of 8(x3-x2+x) & 28(x3+1)​

Answers

Answered by mysticd
34

 Given \:two \: Algebraic \:expressions : \\8(x^{3} - x^{2} + x ) \: and \: [28(x^{3}+1)]

 We \:have ,

 1) 8(x^{3} - x^{2} + x ) \\=\blue{ 2 \times 2} \times 2 x\blue{(x^{2} - x + 1 ) }

 2) 28(x^{3} + 1 ) \\= 2\times 2 \times 7 (x^{3} + 1^{3} ) \\= \blue{2\times 2 }\times 7 (x + 1 )\blue{(x^{2} - x + 1 )}

 \boxed {\pink {Since, a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2} }}

 Now , G.C.D \: of \: 8(x^{3} - x^{2} + x )\:and \\28(x^{3} + 1 ) \\\blue { = 2\times 2 \:(x^{2} - x + 1 )}

 \green { = 4(x^{2} - x + 1 )}

Therefore.,

 \red{ G.C.D \: of \: 8(x^{3} - x^{2} + x )\:and }\\\red{28(x^{3} + 1 ) }\\\green { =  4(x^{2} - x + 1 )}

•••♪

Similar questions