Math, asked by Sehaj882, 1 year ago

find the general solution of cos 3x + cos x - cos2x

Answers

Answered by sabanaz20032001
2

Answer:


cos2x=2cos2x−1cos3x=4cos3x−3cosx

cosx−cos2x+cos3x=0

cosx−(2cos2x−1)+(4cos3x−3cosx)=0

4cos3x−2cos2x−2cosx+1=0

2cos2x(2cosx−1)−1(2cosx−1)=0

(2cosx−1)(2cos2x−1)=0

cosx=12⟹x=±π3+2πn

cosx=±12–√⇒x=π4+π2n


Answered by srijadutta2014
0

Answer:

Step-by-step explanation:Answer:

cos2x=2cos2x−1cos3x=4cos3x−3cosx

cosx−cos2x+cos3x=0

cosx−(2cos2x−1)+(4cos3x−3cosx)=0

4cos3x−2cos2x−2cosx+1=0

2cos2x(2cosx−1)−1(2cosx−1)=0

(2cosx−1)(2cos2x−1)=0

cosx=12⟹x=±π3+2πn

cosx=±12–√⇒x=π4+π2n

Similar questions