Math, asked by rebellove8032, 1 year ago

find the general solution of equation sinx-3sin2x+sin3x=cos x-3 cos 2X+cos3x

Answers

Answered by md427
5

Answer:

Step-by-step explanation:sinx−3sin2x+sin3x=cosx−3cos2x

+cos3x

⇒(sinx+sin3x)−3sin2x−(cosx+cos3x)

+3cos2x=0

⇒2sin(

x+3x

2

)cos(

x−3x

2

)−3sin2x

−2cos(

x+3x

2

)cos(

x−3x

2

)+3cos2x=0

⇒2sin2xcosx−3sin2x−2cos2xcosx

+3cos2x=0

⇒sin2x(2cosx−3)−cos2x(2cosx−3)=0

⇒(2cosx−3)(sin2x−cos2x)=0

⇒cosx=

3

2

, or, sin2x=cos2x

As, cos x

[-1,1]. Thus,

cos x≠

3

2

So,

sin2x=cos2x

⇒tan2x=1

⇒tan2x=tan

π

4

⇒2x=nπ+

π

4

x=

2

+

π

8

Similar questions