Math, asked by RohanJamakhandi, 1 year ago

Find the General solution of
sin2x + sin4x + sin6x = 0 ​

Answers

Answered by sandy1816
2

Step-by-step explanation:

your answer attached in the photo

Attachments:
Answered by Anonymous
2

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

We can also write it as :-

(sin6x + sin2x) + sin4x = 0

Formula :-

{\boxed{\sf\:{sinC+sinD=2sin\dfrac{(C+D)}{2}cos\dfrac{(C-D)}{2}}}}

So,

\tt{\rightarrow 2sin\dfrac{6x+2x}{2}cos\dfrac{6x-2x}{2}+sin4x=0}

2sin4xcos2x + sin4x = 0

sin4x(2cos2x + 1) = 0

sin4x = 0

2cos2x + 1 = 0

\tt{\rightarrow cos2x=-\dfrac{1}{2}}

\tt{\rightarrow cos2x=-cos\dfrac{\pi}{3}}

\tt{\rightarrow cos2x=cos(\pi+\dfrac{\pi}{3})}

\tt{\rightarrow cos2x=cos\dfrac{2\pi}{3}}

Also,

sin4x = 0

Or,

\tt{\rightarrow cos2x=cos\dfrac{2\pi}{3}}

4x = nπ

Or,

\tt{\rightarrow 2x=(2m\pi \pm\dfrac{2\pi}{3})}

Also,

\tt{\rightarrow x=\dfrac{n\pi}{4}}

\tt{\rightarrow x=(m\pi \pm\dfrac{\pi}{3})}

{\boxed{\bigstar{{General\;Solution :- }}}}

\Large{\boxed{\sf\:{x=\dfrac{n\pi}{4}}}}

\Large{\boxed{\sf\:{x=(m\pi \pm\dfrac{\pi}{3}}}}


Anonymous: Fabulous
Anonymous: Thank u soo much
Similar questions