Math, asked by Anonymous, 1 year ago

Find the General Solution of the differential Equation.

Non - Homogeneous Differential Equation.

Using Integration

Question = dy/dx = x + y - 1/2x + 2y + 3

Answer = [ 6y - 3x + log(3x + 3y + 4)] = 0


rakeshmohata: isme answer me 5 log me आ रहा है

Answers

Answered by rakeshmohata
1
Hope u like my process
=====================
 =  >  \frac{dy}{dx}  =  \frac{x + y  +  1}{2x + 2y + 3}  \\  \\  =  >  \frac{dy}{dx} =  \frac{2x + 2y +  2}{2(2x + 2y + 3)}  \\  \\  =  > 2 \frac{dy}{dx}  =  \frac{(2x + 2y + 3) - 1}{(2x + 2y + 3)}   \\  \\ \bf \: let \:  \: 2x + 2y  + 3= z \\  \\  =  >  2\frac{dy}{dx}  =  \frac{dz}{dx}  - 2\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \underline{now} \\  \\    =  >  \frac{dz}{dx}  - 2 =  \frac{z - 1}{z}  \\  \\  =  >  \frac{dz}{dx}  = 2 +  \frac{z - 1}{z}  =  \frac{3z - 1}{z}  \\  \\  =  >  \frac{z}{z -  \frac{1}{3} } dz = 3dx \\  \\  =  >  \int(1 +  \frac{ \frac{1}{3} }{z -  \frac{1}{3} } )dz = 3 \int \: dx \\  \\  =  >  \int dz +  \frac{1}{3} \int \frac{1}{z -  \frac{1}{3} } dz = 3 \int \: dx \\  \\  =  > z +  \frac{1}{3}  log(z -  \frac{1}{3} )  = 3x + c \\  \\  =  > 3z +   log(3z - 1)  -  log(3)  = 9x + c \\  \\  =  > 3(2x + 2y + 3) +  log(3(2x + 2y  +  3) - 1)  - 9x = c \\  \\  =  > 6x + 6y + 9  +  log(6x + 6y + 9 - 1)  - 9x = c \\  \\   = > 6y - 3x +  log(3x + 3y + 4)  +  log(2)  = c \\  \\  \bf =  > 6y - 3x +  log(3x + 3y + 4)  = c
this is the required general solution
____________________________
Hope this is ur required answer

Proud to help you

rakeshmohata: Bro.. आपके questions me bahut mistakes h
rakeshmohata: Idhar question me x+y+1 होगा.. तब ही answer आएगा..
Anonymous: Oh bhaiya.....!! Maybe printing mistake hogi bhaiya.
rakeshmohata: notebook नहीं h.. time lagta h type karne me
Similar questions