Math, asked by khushipandey1603, 2 months ago

Find the general solution of the differential equation:
sec²x.tanydx-sec²ydy=0​

Answers

Answered by mathdude500
2

\large\underline{\bf{Solution-}}

\bf :\longmapsto\: {sec}^{2}x \: tany \: dx -  {sec}^{2}y \: dy = 0

\rm :\longmapsto\: {sec}^{2}x \: tany \: dx  =   {sec}^{2}y \: dy

\rm :\longmapsto\: {sec}^{2}x \: dx = \dfrac{ {sec}^{2}y }{tany}dy

☆ On integrating both sides, we get

 \displaystyle\rm :\longmapsto\: \int {sec}^{2}x \: dx =  \int\dfrac{ {sec}^{2}y }{tany}dy

 \displaystyle\rm :\longmapsto\: tanx=  \int\dfrac{ \dfrac{d}{dx}tany }{tany}dy

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \displaystyle\red{ \bigg \{ \because \: \int \:  {sec}^{2} x = tanx + c  \bigg \}}

\rm :\longmapsto\:tanx =  log(tany) + c

 \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \displaystyle\red{ \bigg \{ \because \: \int \: \dfrac{f'(x)}{f(x)}dx =  logf(x)  + c  \bigg \}}

\bf :\longmapsto\:tanx  -   log(tany)  =  c

Additional Information :-

Solution for Linear Differential Equation :-

The equation of the form

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \: is \: linear \: differential \: equation

☆ Step 1 :- Find Integrating Factor, I.F.

\rm :\longmapsto\:I.F. =  {e} \:  \: ^{\displaystyle \int \: p \: dx}

☆ Step 2 :- Solution is given by

\rm :\longmapsto\:y \:  \times  \: I.F. \:  =  \: \displaystyle \int \: (q \:  \times  \: I.F.) \: dx

Similar questions