Math, asked by Anonymous, 4 months ago

Find the general solution of the differential equation :-

↦{ \boxed{ \mathsf{(  x -  \: y) \frac{DY}{DX }  = x + 2y}}}

Answers

Answered by BrainlyPopularman
16

GIVEN :

 \\ \implies\bf( x - y) \dfrac{dy}{dx} = x + 2y\\

TO FIND :

• Value of differential equation = ?

SOLUTION :

 \\ \implies\bf( x - y) \dfrac{dy}{dx} = x + 2y\\

 \\ \implies\bf\dfrac{dy}{dx} = \dfrac{x + 2y}{x - y}\\

• It's a Homogeneous equation. So let's put y=vx . And –

 \\ \implies\bf\dfrac{dy}{dx} = v + x \dfrac{dv}{dx} \\

• So –

 \\ \implies\bf v + x \dfrac{dv}{dx} =\dfrac{x + 2(vx)}{x - (vx)}\\

 \\ \implies\bf v + x \dfrac{dv}{dx} =\dfrac{x(1+ 2v)}{x(1 -v)}\\

 \\ \implies\bf v + x \dfrac{dv}{dx} =\dfrac{1+ 2v}{1 -v}\\

 \\ \implies\bf x \dfrac{dv}{dx} =\dfrac{1+ 2v}{1 -v} - v\\

 \\ \implies\bf x \dfrac{dv}{dx} =\dfrac{1+ 2v - v(1 -v)}{1 -v}\\

 \\ \implies\bf x \dfrac{dv}{dx} =\dfrac{1+ 2v - v +  {v}^{2} }{1 -v}\\

 \\ \implies\bf x \dfrac{dv}{dx} =\dfrac{1+ v +  {v}^{2} }{1 -v}\\

 \\ \implies\bf \dfrac{1 -v}{1+ v + {v}^{2}}dv = \dfrac{dx}{x} \\

• Integrate on both side –

 \\ \implies\bf  \int\dfrac{1 -v}{1+ v + {v}^{2}}dv = \int\dfrac{dx}{x} \\

 \\ \implies\bf  \int\dfrac{1}{1+ v + {v}^{2}}dv - \int\dfrac{v}{1+ v + {v}^{2}}dv= \int\dfrac{dx}{x} \\

 \\ \implies\bf  \int\dfrac{1}{1+ v + {v}^{2}}dv -  \dfrac{1}{2} \int\dfrac{2v + 1 - 1}{1+ v + {v}^{2}}dv= \int\dfrac{dx}{x} \\

 \\ \implies\bf  \int\dfrac{1}{1+ v + {v}^{2}}dv -  \dfrac{1}{2} \int\dfrac{2v + 1}{1+ v + {v}^{2}}dv +\dfrac{1}{2}\int\dfrac{1}{1+ v + {v}^{2}}dv= \int\dfrac{dx}{x} \\

 \\ \implies\bf \dfrac{3}{2} \int\dfrac{1}{1+ v + {v}^{2}}dv -  \dfrac{1}{2} \int\dfrac{2v + 1}{1+ v + {v}^{2}}dv= \int\dfrac{dx}{x} \\

• Let put –

 \\ \implies\bf \dfrac{3}{2} I_1-  \dfrac{1}{2}I_2= \int\dfrac{dx}{x} \:  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

• Now –

 \\ \implies\bf I_1 =\int\dfrac{1}{1+ v + {v}^{2}}dv\\

 \\ \implies\bf I_1 =\int\dfrac{1}{{ \bigg(v +\dfrac{1}{2} \bigg)}^{2} +  \dfrac{3}{4} }dv\\

• Put v+1=√3t/2

 \\ \implies\bf dv =  \dfrac{ \sqrt{3}}{2}dt \\

• So –

 \\ \implies\bf I_1 =\dfrac{ \sqrt{3}}{2}\int\dfrac{1}{{ \bigg(\dfrac{ \sqrt{3}t}{2} \bigg)}^{2} +  \dfrac{3}{4} }dt\\

 \\ \implies\bf I_1 =\dfrac{ \sqrt{3}}{2}\int\dfrac{1}{\dfrac{3}{4} {t}^{2} +  \dfrac{3}{4} }dt\\

 \\ \implies\bf I_1 =\dfrac{ \sqrt{3}}{2}\int\dfrac{1}{\dfrac{3}{4}({t}^{2} +1)}dt\\

 \\ \implies\bf I_1 =\dfrac{ \sqrt{3}}{2} \times \dfrac{4}{3}\int\dfrac{1}{{t}^{2} +1}dt\\

 \\ \implies\bf I_1 =\dfrac{2}{ \sqrt{3} }\int\dfrac{1}{{t}^{2} +1}dt\\

 \\ \implies\bf I_1 =\dfrac{2}{ \sqrt{3} } \tan^{ - 1} (t) \\

• Now replace 't'

 \\ \implies \large{ \boxed{\bf I_1 =\dfrac{2}{ \sqrt{3} } \tan^{ - 1} \bigg( \dfrac{2v + 1}{ \sqrt{3} } \bigg)}} \\

• And –

 \\ \implies\bf I_2=\int\dfrac{2v + 1}{1+ v + {v}^{2}}dv\\

• Put 1+v+v² = t

 \\ \implies \bf (1 + 2v)dv = dt \\

 \\ \implies\bf I_2=\int\dfrac{dt}{t}\\

 \\ \implies\bf I_2= log(t) \\

• Now replace 't'

 \\ \implies\bf I_2= log(1 + v +  {v}^{2} ) \\

• Put the values of  \tt I_1\:\:and\:\:I_2 in eq.(1) –

 \\ \implies\bf \dfrac{3}{2} \times \dfrac{2}{ \sqrt{3} } \tan^{ - 1} \bigg( \dfrac{2v + 1}{ \sqrt{3} } \bigg)-  \dfrac{1}{2}log(1 + v +  {v}^{2} )= \int\dfrac{dx}{x}\\

 \\ \implies\bf  \sqrt{3} \tan^{ - 1} \bigg( \dfrac{2v + 1}{ \sqrt{3} } \bigg)-  \dfrac{1}{2}log(1 + v +  {v}^{2} )= log(x) + c \\

• Now replace 'v'

 \\ \implies\bf  \sqrt{3} \tan^{ - 1} \bigg( \dfrac{2  \times \dfrac{y}{x}  + 1}{ \sqrt{3} } \bigg)-  \dfrac{1}{2}log \bigg(1 + \dfrac{y}{x} +  { \bigg\{\dfrac{y}{x} \bigg\}}^{2} \bigg)= log(x) + c \\

 \\ \implies \large \red{ \boxed{\bf  \sqrt{3} \tan^{ - 1} \bigg( \dfrac{2y + x}{ \sqrt{3}x } \bigg)-  \dfrac{1}{2}log \bigg( \dfrac{ {x}^{2} + xy +  {y}^{2} }{ {x}^{2} } \bigg)= log(x) + c}} \\


BrainlyIAS: Awesome :-)
BrainlyPopularman: Thanks
Similar questions