Math, asked by jaleesjali, 3 months ago

find the general solution of the equation cos4x=cos2x​

Answers

Answered by sandipthete3
3

Answer:

apako para hogs na

Maine muze nahi aatta iisi lea eeyisa likha khuch log to ata to nahi lekin likhate haiisssshbn

Answered by kmckiranmanojchavan
0

Answer:

cos4x=cos2x

cos4x−cos2x=0

we know that cosx−cosy=−2sin

2

x+y

sin

2

x−y

Replacing x with 4x and y with 2x

−2sin(

2

4x+2x

)sin(

2

4x−2x

)=0

−2sin(

2

6x

)sin(

2

2x

)=0

−2sin3xsinx=0

sin3xsinx=

−2

0

sin3xsinx=0

So, either sin3x=0 or sinx=0

We solve sin3x=0 & sinx=0 separately

General solution for sin3x=0

Let sinx=siny ___(1)

sin3x=sin3y ___(2)

Given sin3x=0

From (1) and (2)

sin3y=0

sin3y=sin(0)

3y=0 ___(3)

y=0 ___(4)

General solution for sin3x=sin3y is

3x=nπ±(−1)

n

3y where n∈Z

Putting y=0

3x=nπ±(−1)

n

0

3x=nπ

x=

3

where n∈Z

General solution for sinx=0

Let sinx=siny

Given sinx=0

From (1) and (2)

siny=0

siny=sin(0)

y=0

General solution for sinx=siny is

x=nπ±(−1)

n

y where n∈Z

putting y=0

x=nπ±(−1)

n

0

x=nπ where n∈Z

Therefore,

General Solution are

For sin3x=0,x=

3

Or

For sinx=0,x=nπ

Where n∈Z

Similar questions