find the general value of 4sin⁴theta+cos⁴theta=1
Answers
Answered by
1
⭐ Answer⭐
4sin
4
α+cos
4
α=1
or4sin
4
α=1−cos
4
α
or4sin
4
α=sin
4
α
orsin
4
α(4−1)=0
orsin
4
α=∞
Answered by
0
4 sin40 +cos40 =1
or, 4 [(sin20)^2+ (cos20)^2] =1
or, 4[( sin20+cos20)^2 -2sin20cos20]
or, 4(1-2sin^20cos^20)=1
or, 1-2sin20cos20 =1/4
or, 2sin20cos20 = 3/4
or, sin20cos20 = 3/8
or, sin0cos0 =root3 / 2 root2
or, 2 sin0cos0 =root3/root2
or, sin20 = root3/root2
Similar questions