Math, asked by AdariSanyasirao, 10 months ago

find the geometric mean of the first 25 powers of 25​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{Numbers $25^1,25^2,25^3,.........25^{25}$}

\textbf{To find:}

\text{Geometric mean of given numbers}

\textbf{Solution:}

\text{We know that,}

\text{Geometric mean of $a_1,a_2,a_3,.........,a_n$ is}

\bf\displaystyle\sqrt[n]{a_1{\times}a_2{\times}a_3{\times}.........{\times}a_n}

\textbf{Geometric mean of first 25 powers of 25}

=\displaystyle\sqrt[25]{25^1{\times}25^2{\times}25^3{\times}.........{\times}25^{25}}

=\displaystyle\sqrt[25]{25^{(1+2+3+..........+25)}}

=\displaystyle\sqrt[25]{25^{\frac{25{\times}26}{2}}}

=\displaystyle\sqrt[25]{25^{25{\times}13}}

=\displaystyle(25^{25{\times}13})^{\frac{1}{25}}

=\displaystyle25^{13}

\therefore\textbf{Geometric mean of first 25 powers of 25 is $\displaystyle\bf25^{13}$}

Find more:

If x y z are in AP and à1 is the am 

of x and y and A2 is the am of y and z then prove that the am of the A1 and A2 is y​

https://brainly.in/question/16748642

Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation

(a) x² -18x -16 = 0

(b) x² -18x +16 = 0

(c) x² +18x -16 = 0

(d) x² +18x +16 = 0

https://brainly.in/question/9603308

Similar questions