Math, asked by senboni123456, 6 hours ago

Find the given limit :
 \displaystyle \tt{ \lim_{x \to0} \:  \dfrac{ sin(\pi  \: cos^{2} (x) )}{ {x}^{2} } }

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi \: cos^{2} (x) )}{ {x}^{2} } }

If we substitute directly x = 0, we get

 \rm \:  =   \: \dfrac{ sin(\pi \: cos^{2} (0) )}{ {0}^{2} }

 \rm \:  =   \: \dfrac{ sin(\pi \: \times 1)}{ 0}

 \rm \:  =   \: \dfrac{ sin(\pi)}{ 0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form

So,

\rm :\longmapsto\:\displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi \: cos^{2} (x) )}{ {x}^{2} } }

can be rewritten as

 \rm \:  =  \: \displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi[1 -  sin^{2}x] )}{ {x}^{2} } }

 \rm \:  =  \: \displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi -  \pi \: sin^{2}x )}{ {x}^{2} } }

We know,

 \red{\rm :\longmapsto\:\boxed{\tt{ \: sin(\pi - x) = sinx \: }}}

So, using this we get

 \rm \:  =  \: \displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi \: sin^{2}x )}{ {x}^{2} } }

 \rm \:  =  \: \displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi \: sin^{2}x )}{\pi  {sin}^{2}x} } \times \dfrac{\pi \:  {sin}^{2}x}{ {x}^{2} }

 \rm \:  =  \pi\: \displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi \: sin^{2}x )}{\pi  {sin}^{2}x} } \times \displaystyle\lim_{x \to 0}\tt \dfrac{\:  {sin}^{2}x}{ {x}^{2} }

We know,

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{sinx}{x} = 1 \:  \: }}

\red{\sf[As \: x \to 0\sf\implies sinx \to 0\sf\implies  {sin}^{2}x \to  0\sf\implies \pi{sin}^{2}x \to0]}

So, using this we get

 \rm \:  =  \: \pi \times 1 \times 1

 \rm \:  =  \: \pi

Hence,

\sf\implies \: \boxed{\tt{  \:  \: \displaystyle \tt{ \lim_{x \to0} \: \dfrac{ sin(\pi \: cos^{2} (x) )}{ {x}^{2} } } = \pi \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{sinx}{x} = 1 \:  \: }}

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{tanx}{x} = 1 \:  \: }}

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{1 - cosx}{x} = 0 \:  \: }}

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{log( + x)}{x} = 1 \:  \: }}

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{ {e}^{x}  - 1}{x} = 1 \:  \: }}

\rm :\longmapsto\:\boxed{\tt{ \:  \: \displaystyle\lim_{x \to 0}\tt \:  \frac{ {a}^{x}  - 1}{x} = loga \:  \: }}

Answered by sajan6491
21

 \displaystyle  \sf \red{ \lim_{x \to 0} \frac{\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}}{x^{2}}}

 \displaystyle \sf {\color{red}{\lim_{x \to 0} \frac{\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}}{x^{2}}} = \color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}\right)}{\frac{d}{dx}\left(x^{2}\right)}}}

 \displaystyle \sf \red{\color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}\right)}{\frac{d}{dx}\left(x^{2}\right)}} = \color{red}{\lim_{x \to 0}\left(- \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)}}{x}\right)}}

 \displaystyle \sf \red{\color{red}{\lim_{x \to 0}\left(- \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)}}{x}\right)} = \color{red}{\lim_{x \to 0} \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)}}{x}}}

 \displaystyle \sf{\color{red}{\lim_{x \to 0} \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)}}{x}} = \color{red}{\pi \lim_{x \to 0} \frac{\sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)}}{x}}}

 \displaystyle \sf \red{\pi \color{red}{\lim_{x \to 0} \frac{\sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)}}{x}} = \pi \color{red}{\lim_{x \to 0} \frac{\sin{\left(x \right)}}{x} \lim_{x \to 0} \cos{\left(x \right)} \lim_{x \to 0} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)}}}

 \displaystyle \sf \red{\pi \lim_{x \to 0} \frac{\sin{\left(x \right)}}{x} \lim_{x \to 0} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)} \color{red}{\lim_{x \to 0} \cos{\left(x \right)}} = \pi \lim_{x \to 0} \frac{\sin{\left(x \right)}}{x} \lim_{x \to 0} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)} \color{red}{1}}

 {\displaystyle  \sf\red{\pi \lim_{x \to 0} \frac{\sin{\left(x \right)}}{x} \color{red}{\lim_{x \to 0} \cos{\left(\pi \sin^{2}{\left(x \right)} \right)}} = \pi \lim_{x \to 0} \frac{\sin{\left(x \right)}}{x} \color{red}{1}}}

 \displaystyle \sf \red{\pi \color{red}{\lim_{x \to 0} \frac{\sin{\left(x \right)}}{x}} = \pi \color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(\sin{\left(x \right)}\right)}{\frac{d}{dx}\left(x\right)}}}

 \displaystyle \sf \red{\pi \color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(\sin{\left(x \right)}\right)}{\frac{d}{dx}\left(x\right)}} = \pi \color{red}{\lim_{x \to 0} \cos{\left(x \right)}}}

 \displaystyle \sf \red{\pi \color{red}{\lim_{x \to 0} \cos{\left(x \right)}} = \pi \color{red}{1}}

Therefore,

 \displaystyle \sf \red{\lim_{x \to 0} \frac{\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}}{x^{2}} = \pi}

Similar questions