Physics, asked by bhatasif042, 8 months ago

Find the gradient of =√x²+y²+z² where is magnitude of position vector ⃗ = + j+k

Answers

Answered by raj258935
1

Answer:

The position vector of a point P(x, y) in two dimensions is xi + ... j +. ∂f. ∂z k . Exercise 1. Calculate the gradient of the ... The vector 4i−3k has magnitude √42 + (−3)2 =.

Answered by talasilavijaya
0

Answer:

The gradient of the given vector is

\dfrac{x}{ \sqrt{x^2+y^2+z^2} }\hat i+ \dfrac{y}{ \sqrt{x^2+y^2+z^2}} \hat j+ \dfrac{z}{ \sqrt{x^2+y^2+z^2}} \hat k

Explanation:

Assuming the given vector is

R(x,y,z)=\sqrt{x^2+y^2+z^2}

which represents the magnitude of position vector.

Need to find the gradient of the given vector.

If f(\vec r) = f(x, y, z) is defined as a scalar field, then a scalar function of position \vec r = (x, y, z), then its gradient at any point in three dimensions, f(x, y, z) is given by

\nabla f(x,y,z)=\dfrac{\partial f}{\partial x} \hat i+\dfrac{\partial f}{\partial y} \hat j+\dfrac{\partial f}{\partial z} \hat k

Rewriting the vector equation,

R(x,y,z)=\big(x^2+y^2+z^2\big)^\frac{1}{2}

Substituting the given vector

\nabla R(x,y,z)=\dfrac{\partial \big(x^2+y^2+z^2\big)^\frac{1}{2}}{\partial x} \hat i+\dfrac{\partial \big(x^2+y^2+z^2\big)^\frac{1}{2}}{\partial y} \hat j+\dfrac{\partial \big(x^2+y^2+z^2\big)^\frac{1}{2}}{\partial z} \hat k

=\dfrac{1}{2} \big(x^2+y^2+z^2\big)^{\frac{1}{2}-1}\times \dfrac{\partial \big(x^2\big)}{\partial x} \hat i+\dfrac{1}{2} \big(x^2+y^2+z^2\big)^{\frac{1}{2}-1}\times \dfrac{\partial \big(y^2\big)}{\partial y} \hat j+\dfrac{1}{2} \big(x^2+y^2+z^2\big)^{\frac{1}{2}-1}\times \dfrac{\partial \big(z^2\big)}{\partial z} \hat k

=\dfrac{1}{2} \big(x^2+y^2+z^2\big)^{-\frac{1}{2}}\times 2x^{2-1}\hat i+\dfrac{1}{2} \big(x^2+y^2+z^2\big)^{-\frac{1}{2}}\times 2y^{2-1} \hat j+\dfrac{1}{2} \big(x^2+y^2+z^2\big)^{-\frac{1}{2}}\times 2z^{2-1} \hat k

= \big(x^2+y^2+z^2\big)^{-\frac{1}{2}} x\hat i+ \big(x^2+y^2+z^2\big)^{-\frac{1}{2}}\times y \hat j+ \big(x^2+y^2+z^2\big)^{-\frac{1}{2}} z \hat k

= \dfrac{x}{ \big(x^2+y^2+z^2\big)^{\frac{1}{2}}}\hat i+ \dfrac{y}{ \big(x^2+y^2+z^2\big)^{\frac{1}{2}}} \hat j+ \dfrac{z}{ \big(x^2+y^2+z^2\big)^{\frac{1}{2}}} \hat k

= \dfrac{x}{ \sqrt{x^2+y^2+z^2} }\hat i+ \dfrac{y}{ \sqrt{x^2+y^2+z^2}} \hat j+ \dfrac{z}{ \sqrt{x^2+y^2+z^2}} \hat k

Therefore, the gradient of the given vector is

\dfrac{x}{ \sqrt{x^2+y^2+z^2} }\hat i+ \dfrac{y}{ \sqrt{x^2+y^2+z^2}} \hat j+ \dfrac{z}{ \sqrt{x^2+y^2+z^2}} \hat k

For more problems

https://brainly.in/question/48889151

https://brainly.in/question/14244081

Similar questions