find the greatest and least values:(sin-1x)2+(cos-1x)2
Answers
Answered by
69
Given,
differentiate f(x) with respect to x
![\bold{f'(x)=2sin^{-1}x\frac{1}{\sqrt{1-x^2}}+2cos^{-1}\frac{-1}{\sqrt{1-x^2}}} \bold{f'(x)=2sin^{-1}x\frac{1}{\sqrt{1-x^2}}+2cos^{-1}\frac{-1}{\sqrt{1-x^2}}}](https://tex.z-dn.net/?f=%5Cbold%7Bf%27%28x%29%3D2sin%5E%7B-1%7Dx%5Cfrac%7B1%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%2B2cos%5E%7B-1%7D%5Cfrac%7B-1%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%7D+)
![\bold{f'(x)=\frac{2}{\sqrt{1-x^2}}[sin^{-1}x-cos^{-1}x]} \bold{f'(x)=\frac{2}{\sqrt{1-x^2}}[sin^{-1}x-cos^{-1}x]}](https://tex.z-dn.net/?f=%5Cbold%7Bf%27%28x%29%3D%5Cfrac%7B2%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%5Bsin%5E%7B-1%7Dx-cos%5E%7B-1%7Dx%5D%7D)
now, f'(x) = 0
then,![\bold{[sin^{-1}x-cos^{-1}x]=0}\\\bold{sin^{-1}x=cos^{-1}x}\implies x=\frac{1}{\sqrt{2}} \bold{[sin^{-1}x-cos^{-1}x]=0}\\\bold{sin^{-1}x=cos^{-1}x}\implies x=\frac{1}{\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbold%7B%5Bsin%5E%7B-1%7Dx-cos%5E%7B-1%7Dx%5D%3D0%7D%5C%5C%5Cbold%7Bsin%5E%7B-1%7Dx%3Dcos%5E%7B-1%7Dx%7D%5Cimplies+x%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D)
We also know, domain of
and
∈ [ -1 1]
∴ find f(x) at x = 1 , -1 and 1/√2
f(1) = (sin⁻¹(1))² + (cos⁻¹(1))² = π²/4 + 0 = π²/4
f(-1) = (sin⁻¹(-1))² + (cos⁻¹(-1))² = π²/4 + π² = 5π²/4
f(1/√2) = (sin⁻¹(1/√2))² + (cos⁻¹(1/√2))² = π²/16 + π²/16 = π²/8
Hence, maximum value of f(x) = 5π²/4
Minimum value of f(x) = π²/8
differentiate f(x) with respect to x
now, f'(x) = 0
then,
We also know, domain of
∴ find f(x) at x = 1 , -1 and 1/√2
f(1) = (sin⁻¹(1))² + (cos⁻¹(1))² = π²/4 + 0 = π²/4
f(-1) = (sin⁻¹(-1))² + (cos⁻¹(-1))² = π²/4 + π² = 5π²/4
f(1/√2) = (sin⁻¹(1/√2))² + (cos⁻¹(1/√2))² = π²/16 + π²/16 = π²/8
Hence, maximum value of f(x) = 5π²/4
Minimum value of f(x) = π²/8
Answered by
3
by rakhithakur
Similar questions