Math, asked by akashkanojiya2715, 1 year ago

find the greatest and least values:(sin-1x)2+(cos-1x)2

Answers

Answered by abhi178
69
Given, \bold{f(x)=(sin^{-1}x)^2+(cos^{-1}x)^2}
differentiate f(x) with respect to x
\bold{f'(x)=2sin^{-1}x\frac{1}{\sqrt{1-x^2}}+2cos^{-1}\frac{-1}{\sqrt{1-x^2}}}
\bold{f'(x)=\frac{2}{\sqrt{1-x^2}}[sin^{-1}x-cos^{-1}x]}
now, f'(x) = 0
then, \bold{[sin^{-1}x-cos^{-1}x]=0}\\\bold{sin^{-1}x=cos^{-1}x}\implies x=\frac{1}{\sqrt{2}}

We also know, domain of Sin^{-1}x and Cos^{-1}x ∈ [ -1 1]
∴ find f(x) at x = 1 , -1 and 1/√2

f(1) = (sin⁻¹(1))² + (cos⁻¹(1))² = π²/4 + 0 = π²/4
f(-1) = (sin⁻¹(-1))² + (cos⁻¹(-1))² = π²/4 + π² = 5π²/4
f(1/√2) = (sin⁻¹(1/√2))² + (cos⁻¹(1/√2))² = π²/16 + π²/16 = π²/8

Hence, maximum value of f(x) = 5π²/4
Minimum value of f(x) = π²/8
Answered by rakhithakur
3

answer \:  =  >  \frac{5 {\pi}^{2} }{4} and \:  \frac{ {\pi}^{2} }{8}

 \red{</p><p>step \:  by  \: step  \: explanation </p><p>} \\  =  &gt;

( { { \sin }^{ - 1}x})^{2}   +  ({  { \cos }^{ - 1}  x})^{2}  \\ =  {[ ({ \sin }^{ - 1}x +  { \cos}^{ - 1} ) ]}^{2}  - 2 { \sin }^{ - 1} x  { \cos }^{ - 1}  \\ =   { \frac{\pi}{4} }^{2}  - 2 { \sin }^{ - 1} x( \frac{\pi}{2}  -  { \sin }^{ - 1} x) \\  =  \frac{ {\pi}^{2} }{4}  - \pi { \sin }^{ - 1} x + 2 {( { \sin}^{ - 1} x)}^{2}  \\  = 2 [ {( { \sin }^{ - 1} x)}^{2}  -  \frac{\pi}{2} { \sin}^{ - 1} x +  { \frac{\pi}{8} }^{2}  ] \\  = 2 [ {( { \sin }^{ - 1} x)}^{2}  -  \frac{\pi}{2} { \sin}^{ - 1} x +  \frac{ {\pi}^{2} }{16}    -  \frac{ {\pi}^{2} }{16} +  { \frac{\pi}{8} }^{2}   ] \\  = 2[ {( { \sin }^{ - 1}x  -  \frac{ {\pi}^{2} }{4} )} +  \frac{ {\pi}^{2} }{16}   ]  \\  now \frac{ - \pi}{2}  \leqslant  { \sin}^ {- 1} x \leqslant  \frac{\pi}{2}  \:  \: for \:  \: all \: x ∈[  - 1,1 ] \\  =  &gt;  \frac{ - \pi}{2}  -  \frac{\pi}{4}  \leqslant  { \sin}^{ - 1}  -  \frac{\pi}{4}  \leqslant  \frac{\pi}{2}  -  \frac{\pi}{4} : for \:  \: all \: x ∈[  - 1,1 ]  \\  =  &gt; -   \frac{3\pi }{4}  \leqslant  {( { \sin }^{ - 1} x -  \frac{\pi}{4} )}^{2}  \leqslant  \frac{\pi}{4} : for \:  \: all \: x ∈[  - 1,1 ]  \\  =  &gt; 0 \leqslant  {( { \sin }^{ - 1} x -  \frac{\pi}{4} )}^{2}  \leqslant  \frac{9 {\pi}^{2} }{16}  \\  =  &gt;  \frac{ {\pi}^{2} }{16}  \leqslant  {( \sin }^{ - 1} x -  \frac{\pi}{4})^{2}   + \frac{ {\pi}^{2} }{16}  \leqslant  \frac{9 {\pi}^{2} }{16}  +   \frac{ {\pi}^{2} }{16}  \\   \\   =  &gt;  \frac{ {\pi}^{2} }{16} \leqslant   {( \sin }^{ - 1} x -  \frac{\pi}{4})^{2}    +  \frac{ {\pi}^{2} }{16}  \leqslant  \frac{5 {\pi}^{2} }{8}   \\  =  &gt;  \frac{ {\pi}^{2} }{8 }  \leqslant 2[ {( { \sin }^{ - 1} -  \frac{\pi}{4}  )}^{2} +  \frac{ {\pi}^{2} }{16}  ] \leqslant  \frac{5 {\pi}^{2} }{4}  \\   =  &gt; \frac{ {\pi}^{2} }{8}  \leqslant  {( { \sin }^{ - 1} x)}^{2}  +   {({ \cos}^{ - 1} x)}^{2}   \leqslant  \frac{5 {\pi}^{2} }{4}  \\  \blue{ hence \: the \: greatest \: and \: the \: least \: value \: of} \pink { { ({ \sin }^{ - 1}x) }^{2}  +  { ({ \cos }^{ - 1} x)}^{2}   } \purple{are} \green{ \frac{5 {\pi}^{2} }{4} }  and \red {  \frac{ {\pi}^{2} }{8}  } \: respectively

by rakhithakur

Similar questions