find the greatest angle of the triangle given sides a=x^2+3x+3,b=x^2+2x,c=2x+3
Answers
Answered by
1
Answer:
Let a=x
2
−1;b=2x+1,c=x
2
+x+1
Here the greatest side is c=x
2
+x+1
The greatest angle C will be opposite the greatest side.
c=x
2
+x+1
Use the cosine rule
⇒c
2
=a
2
+b
2
−2bc.cosC
⇒(x
2
+x+1)
2
=(x
2
−1)
2
+(2x+1)
2
−2(x
2
−1)(2x+1)cosC
⇒2(x
2
−1)(2x+1)cosC=[(x
2
−1)
2
−(x
2
+x+1)
2
]+(2x+1)
2
⇒2(x
2
−1)(2x+1)cosC=(x
2
−1+x
2
+x+1)(x
2
−1−x
2
−x−1)+(2x+1)
2
⇒2(x
2
−1)(2x+1)cosC=x(2x+1)(−2−x)+(2x+1)
2
⇒2(x
2
−1)cosC=x(−2−x)+(2x+1)=−x
Similar questions