Math, asked by rachanavyas2015, 1 month ago

Find the greatest number of four digits which when divided by 10, 15, 21 and 28 leaves 4, 9, 15 and 22 as remainders respectively?

Answers

Answered by banturana9
0

(10−3)=(11−4)=(15−8) =(22−15)=7

Therefore, the following method can be applied.

LCM(10,11,15,22)=330LCM(10,11,15,22)=330

divide the four digit largest number i.e 9999 by 330

you will get 99 as remainder

now subtract 99 from 9999.

we have , 9999-99= 9900

now subtract number 7 from 9900

i.e 9900−7=9893

Hence answer is 9893

Similar questions