Math, asked by shravs1, 1 year ago

find the h.c.f by euclid division algorithm of 240 and 228. plz ....... its urgent plzzzzxxz do rply fasttttttttttttt


shravs1: r they any to answer diz question??

Answers

Answered by mindfulmaisel
133

The H.C.F. of ‘240 and 228’ by “Euclid division algorithm” is 12.

To find:

H.C.F. of 240 and 228

Solution:

Here 240 > 228 we always divide greater number with smaller one.

Divide 240 by 228 we get 1 quotient and 12 as remainder so that

240=228 \times 1+12

Divide 228 by 12 we get 19 quotient and there is ‘no remainder’ so we can write  

228=12 \times 19+0

As there are no remainder, 12 is the “H.C.F. of 240 and 228”.

Answered by mysticd
36

Answer:

HCF of 240 and 228 is 12

Step-by-step explanation:

Euclid's Division Lemma:

Given positive integers a and b , there exist unique pair of Integers q and r satisfying

a = bq+r , 0r< b.

Given numbers 240 and 228

240> 228

when 240 is divided by 228, the remainder is 12 to get

240 = 228×1+12

Remainder not equal to zero, Apply division Lemma again to get

228 = 12 × 19+0

Remainder has become zero.

We claim that the HCF of 240 and 228 is the divisor at this stage, i.e,.12

Therefore,

HCF of 240 and 228 is 12

Similar questions