Math, asked by kashiskummar469, 1 year ago

Find the hcf and lcm of 510 765 408 in prime factorization methord

Answers

Answered by MaheswariS
25

\textbf{Given numbers are 510, 765, 408}

\textbf{To find: HCF}

\begin{array}{r|l}2&510\\\cline{2-2}3&255\\\cline{2-2}5&85\\\cline{2-2}17&17\\\cline{2-2}&1\\\cline{2-2}\end{array}

\begin{array}{r|l}3&765\\\cline{2-2}3&255\\\cline{2-2}5&85\\\cline{2-2}17&17\\\cline{2-2}&1\\\cline{2-2}\end{array}

\begin{array}{r|l}2&408\\\cline{2-2}2&204\\\cline{2-2}2&102\\\cline{2-2}3&51\\\cline{2-2}17&17\\\cline{2-2}&1\\\cline{2-2}\end{array}

\textbf{Finding HCF:}

510=2{\times}\boxed{3}{\times}5{\times}\boxed{17}

765=\boxed{3}{\times}3{\times}5{\times}\boxed{17}

408=2{\times}2{\times}2{\times}\boxed{3}{\times}\boxed{17}

\text{From the common factors, we get}

\text{HCF=}3{\times}17

\implies\textbf{HCF=51}

\textbf{Finding LCM:}

510=2{\times}3{\times}5{\times}17

765=3^2{\times}5{\times}17

408=2^3{\times}3{\times}17

\text{LCM=}2^3{\times}3^2{\times}5{\times}17

\text{LCM=8}{\times}9{\times}5{\times}17

\implies\textbf{LCM=6120}

\therefore\textbf{HCF=51 and LCM=6120}

Find more:

Find the ratio between HCF and LCM of 10 15 and 20

https://brainly.in/question/15064394

Find the greatest number that divides 3128 and 420 ​

https://brainly.in/question/15327150

Find hcf of 144, 96, 54 by prime factorisation

https://brainly.in/question/2132704

Answered by ItarSvaran
13

Answer:

जय श्री राम

यह रहा आपके प्रश्न का उत्तर

Attachments:
Similar questions