find the HCF and LCM of foll. using FUNDAMENTAL THEOREM of ARITHMETIC method (Prime Factorization)
1)96 and 404
2)6,72 and 120
3)26 and 91
4)6 and 20
5)17,23 and 29
6)8,9 and 25
7)426 and 576
8)26676 and 337554
9)1376 and 15428
10)11008 and 7344
11)625,1125 and 2125
12)448,1008 and168
13)270,405 and 315
14)377,435 and 667
Answers
Hope this helps you ;)
Given:
1)96 and 404 , 2)6,72 and 120, 3)26 and 91 , 4)6 and 20 , 5)17,23 and 29 , 6)8,9 and 25 , 7)426 and 576 , 8)26676 and 337554, 9)1376 and 15428 , 10)11008 and 7344 , 11)625,1125 and 2125 , 12)448,1008 and168 13)270,405 and 315 , 14)377,435 and 667
To find:
The H.C.F and L.C.M of the following by using prime factorization method
Solution:
(1). 96 and 404
96 = 2 × 2 × 2 × 2 × 2 × 3
404 = 2 × 2 × 101
∴ H.C.F. = 2 × 2 = 4
∴ L.C.M. = 2 × 2 × 2 × 2 × 2 × 3 × 101 = 9696
(2). 6, 72 and 120
6 = 2 × 3
72 = 2 × 2 × 2 × 3 × 3
120 = 2 × 2 × 2 × 3 × 5
∴ H.C.F. = 2 × 3 = 6
∴ L.C.M. = 2 × 2 × 2 × 3 × 3 × 5 = 360
(3). 26 and 91
26 = 2 × 13
91 = 7 × 13
∴ H.C.F. = 13
∴ L.C.M. = 2 × 7 × 13 = 182
(4). 6 and 20
6 = 2 × 3
20 = 2 × 2 × 5
∴ H.C.F. = 2
∴ L.C.M. = 2 × 2 × 3 × 5 = 60
(5). 17, 23 and 29
17 = 1 × 17
23 = 1 × 23
29 = 1 × 29
∴ H.C.F. = 1
∴ L.C.M. = 17 × 23 × 29 = 11339
(6). 8, 9 and 25
8 = 2 × 2 × 2
9 = 3 × 3
25 = 5 × 5
∴ H.C.F. = 1
∴ L.C.M. = 2 × 2 × 2 × 3 × 3 × 5 × 5 = 1800
(7). 426 and 576
426 = 2 × 3 × 71
576 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3
∴ H.C.F. = 2 × 3 = 6
∴ L.C.M. = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 71 = 40896
(8). 26676 and 337554
26676 = 2 × 2 × 3 × 3 × 3 × 13 × 19
337554 = 2 × 3 × 3 × 3 × 7 × 19 × 47
∴ H.C.F. = 2 × 3 × 3 × 3 × 19 = 1026
∴ L.C.M. = 2 × 2 × 3 × 3 × 3 × 7 × 13 × 19 × 47 = 8776404
(9). 1376 and 15428
1376 = 2 × 2 × 2 × 2 × 2 × 43
15428 = 2 x 2 x 7 x 19 x 29
∴ H.C.F. = 2 × 2 = 4
∴ L.C.M. = 2 × 2 × 2 × 2 × 2 × 7 × 19 × 29 × 43 = 5307232
(10). 11008 and 7344
1376 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 17
15428 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 43
∴ H.C.F. = 2 × 2 × 2 × 2 = 16
∴ L.C.M. = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 17 × 43 = 5052672
(11). 625, 1125 and 2125
625 = 5 × 5 × 5 × 5
1125 = 3 × 3 × 5 × 5 × 5
2125 = 5 × 5 × 5 × 17
∴ H.C.F. = 5 × 5 × 5 = 125
∴ L.C.M. = 3 × 3 × 5 × 5 × 5 × 5 × 17 = 95625
(12). 448, 1008 and 168
448 = 2 × 2 × 2 × 2 × 2 × 2 × 7
1008 = 2 × 2 × 2 × 2 × 3 × 3 × 7
168 = 2 × 2 × 2 × 3 × 7
∴ H.C.F. = 2 × 2 × 2 × 7 = 56
∴ L.C.M. = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 7 = 4032
(13). 270, 405 and 315
270 = 2 × 3 × 3 × 3 × 5
405 = 3 × 3 × 3 × 3 × 5
315 = 3 × 3 × 5 × 7
∴ H.C.F. = 3 × 3 × 3 × 5 = 45
∴ L.C.M. = 2 × 3 × 3 × 3 × 3 × 5 × 7 = 5670
(14). 377, 435 and 667
377 = 13 × 29
435 = 3 × 5 × 29
667 = 23 × 29
∴ H.C.F. = 29
∴ L.C.M. = 3 × 5 × 13 × 23 × 29 = 130065
------------------------------------------------------------------------------------
Also View:
Find the HCF and LCM of 306 and 657by prime factorization method
https://brainly.in/question/1241341
Find hcf and lcm of 90 and 144 by the prime factorization method
https://brainly.in/question/1244287