Math, asked by gaurav312840, 10 months ago

Find the HCF of 81 and 237 and express it as a linear combination of 81 and 237

Answers

Answered by SUBRATA4322
2

Answer:

Given integers are 81 and 237 such that 81<237.

Applying division lemma to 81 and 237, we get

237=81×2+75 

Since the remainder 75=0. So, consider the divisor 81 and the remainder 75 arndapply division lemma to get

81=75×1+6  

We consider the new divisor 75 and the new remainder 6 and apply division lemma to get

75=6×12+3  

We consider the new divisor 6 and the new remainder 3 and apply division lemma to get

6=3×2+0  

The remainder at this stage is zero. So, the divisor at this stage or the remainder at the earlier stage i.e. 3 is the HCF of 81 and 237.

To represent the HCF as a linear combination of the given two numbers, we start from the last but one step and successively eliminate the previous remainder as follows: 

From (iii), we have

3=75−6×12

⇒3=75−(81−75×1)×12

⇒3=75−12×81+12×75

⇒3=13×75−12×81

⇒3=13×(237−81×2)−12×81

⇒3=13×237−26×81−12×81

⇒3=13×237−38×81

⇒3=237x+81y, where x=1

Similar questions