find the HCF of 81 and 237and express it as a linear combination of 81 and 237.
Answers
Answered by
5
Euclid division lemma :
a = bq + r
0 ≤ r < b
a > b
237 = 81 × 2 + 75
81 = 75 × 1 + 6
75 = 6 × 12 + 3
6 = 3 × 2 + 0
Therefore, HCF of 237 and 81 is 3.
3 = 75 - 6 × 12
= 75 - (81 - 75 × 1)×12
= 75 - 81×12 + 75×12
= 75+75×12 - 81×12
= 75×13 - 81×12
= (237-81×3)×13 - 81×12
= 237×13 - 81×26 - 81×12
= 237×13 - 81(26+12)
= 237×13 - 81×38
= 237×13 + 81×(-38)
= 237x + 81y
x = 13 and y = -38
Hope it helps...
a = bq + r
0 ≤ r < b
a > b
237 = 81 × 2 + 75
81 = 75 × 1 + 6
75 = 6 × 12 + 3
6 = 3 × 2 + 0
Therefore, HCF of 237 and 81 is 3.
3 = 75 - 6 × 12
= 75 - (81 - 75 × 1)×12
= 75 - 81×12 + 75×12
= 75+75×12 - 81×12
= 75×13 - 81×12
= (237-81×3)×13 - 81×12
= 237×13 - 81×26 - 81×12
= 237×13 - 81(26+12)
= 237×13 - 81×38
= 237×13 + 81×(-38)
= 237x + 81y
x = 13 and y = -38
Hope it helps...
Similar questions
Chemistry,
8 months ago
Hindi,
8 months ago
History,
8 months ago
Chemistry,
1 year ago
Social Sciences,
1 year ago
India Languages,
1 year ago