Math, asked by tanusree239, 8 months ago

find the HCF of the following by using Euclid's division lemma? (50and70)

Answers

Answered by meetgurjar110
2

Answer:

10 is HCF

Step-by-step explanation:

10 is write answer

Answered by sk181231
1

Answer:

\huge\underline\mathcal\red{Solution}

Well I can give you an example to make it easier for you

Let N=42, p=7 and N=14.3

then either,

x.7=14

or

x.7=3

Note: In this case, 7 divides 14 (where x=2).

ALSO: N is a prime number of the multiple p and N=a.b where a and b must be a multiple of p.

1. q is called the quotient

2. r is called the remainder

3. b is called the divisor

4. a is called the dividend

To make this even more simpler we can take any two numbers

Example : Find the H.C.F. between 225 and 135 ?

Solution : We know that 225 > 135

So we have 225 as the dividend and 135 as the divisor

Remember: Dividend = Divisor*Quotient+Remainder.

and

we would need to repeat the above formula till we finally get the value of the Remainder = 0. The value of the Divisor will be the H.C.F.

So, we have

225 = 135*1+90

Further,

135 = 90*1+45

Again,

90 = 45*2+0

Now, Remainder = 0

and, Divisor = 45.

Therefore 45 is the H.C.F. between 225 and 135.

Similar questions