Math, asked by NAYANASIN, 3 months ago

find the height if the area of the parrelogram is 36 square cm and base is 9 cm​

Answers

Answered by BrainlyRish
5

Correct Question :

  • Find the height of the parallelogram if the area of parallelogram is 36 cm² and base in 9 cm .

Given : The area of parallelogram is 36 cm² and base in 9 cm .

Need To Find : The Height of Parallelogram.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Height of the Parallelogram be h .

\underline{\frak{ As, \:We\:know\:that\::}}\\

⠀⠀⠀⠀⠀\sf{\boxed {\sf{\red{ Area_{(Parallelogram)} = b \times h \:sq.units}}}}\\

⠀⠀⠀⠀⠀Here b is the Base of parallelogram in cm and h is the Height of Parallelogram in cm . And we have given with the Area of Parallelogram is 36 cm² .

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 36cm^{2} = 9 \times h }\\

⠀⠀⠀⠀⠀:\implies \tt{ \dfrac{36}{9} =  h }\\

⠀⠀⠀⠀⠀:\implies \tt{ \dfrac{\cancel {36}}{\cancel {9}} =  h }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  h = 4\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline { \mathrm{ \pink {  Height \:of\:Parallelogram \:is\:4\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad\quad\boxed{\bf{\mid{\overline{\underline{\large{\bigstar\: Verification \: :}}}}}\mid}\\\\\\

\underline{\frak{ As, \:We\:know\:that\::}}\\

⠀⠀⠀⠀⠀\sf{\boxed {\sf{\red{ Area_{(Parallelogram)} = b \times h \:sq.units}}}}\\

⠀⠀⠀⠀⠀Here b is the Base of parallelogram in cm and h is the Height of Parallelogram in cm . And we have given with the Area of Parallelogram is 36 cm² .

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \:and\:found\: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 36cm^{2} = 9 \times 4 }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  36cm^{2} = 36\: cm^{2}}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore \underline {\bf{ Hence \;Verified \:}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad\quad\boxed{\bf{\mid{\overline{\underline{\large{\bigstar\: More \: to \; know\: :}}}}}\mid}\\\\\\

⠀⠀

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
73

Correct Question :

  • Find the height of the parallelogram if the area of parallelogram is 36 cm² and base in 9 cm .

Given : The area of parallelogram is 36 cm² and base in 9 cm .

Need To Find : The Height of Parallelogram.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Height of the Parallelogram be h .

\begin{gathered}\underline{\frak{ As, \:We\:know\:that\::}}\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}\sf{\boxed {\sf{\green{ Area_{(Parallelogram)} = b \times h \:sq.units}}}}\\\end{gathered}

⠀⠀⠀⠀⠀Here b is the Base of parallelogram in cm and h is the Height of Parallelogram in cm . And we have given with the Area of Parallelogram is 36 cm² .

⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}:\implies \sf{ 36cm^{2} = 9 \times h }\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}:\implies \sf{ \dfrac{36}{9} = h }\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}:\implies \sf{ \dfrac{\cancel {36}}{\cancel {9}} = h }\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}\underline {\boxed{\purple{ \sf {  h = 4\: cm}}}}\:\bf{\bigstar}\\\end{gathered}

Therefore,

⠀⠀⠀⠀⠀\begin{gathered}\therefore {\underline { \sf {  Height \:of\:Parallelogram \:is\:{\textsf{\textbf{4\: cm}}}}}}\\\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\begin{gathered}\qquad\quad\boxed{\bf{\mid{\overline{\underline{\large{\bigstar\: Verification \: :}}}}}\mid}\\\\\\\end{gathered}

\begin{gathered}\underline{\frak{ As, \:We\:know\:that\::}}\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}\sf{\boxed {\sf{\green{ Area_{(Parallelogram)} = b \times h \:sq.units}}}}\\\end{gathered}

⠀⠀⠀⠀⠀Here b is the Base of parallelogram in cm and h is the Height of Parallelogram in cm . And we have given with the Area of Parallelogram is 36 cm² .

⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \:and\:found\: Values \::}}\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}:\implies \sf{ 36cm^{2} = 9 \times 4 }\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}\underline {\boxed{\purple{ \sf {  36cm^{2} = 36\: cm^{2}}}}}\:\bf{\bigstar}\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered} \underbrace{\textsf{\textbf{❛ Hence \;Verified ❞}}}\\\end{gathered}

⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀{\textsf{\textbf{\red{@ItzAakriti⚘}}}}

Similar questions