Math, asked by sravankumarachi3571, 1 year ago

Find the height of a cylinder whose radius is 7cm and the total surface area is 968cm2

Answers

Answered by nickkaushiknick
22

Answer:

Height = 15 cm

Step-by-step explanation:

Let the height of the cylinder be H

Given that Total Surface Area of Cylinder = 968 cm²,

and radius = 7 cm

But we know that Total Surface Area of Cylinder = 2πr(r + h)

[Where r is radius of the base of cylinder and h is height of the cylinder]

∴ 2πr ( r + h ) = 968 cm²

2 × (22/7) × 7 × ( 7  + H ) = 968

7 + H = 968  / ( 22 × 2)

7 + H = 22

H = 15 cm

∴ Height of the given cylinder = 15 cm

Answered by BrainlyConqueror0901
33

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=15\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 7\: cm} \\ \\ : \implies \text{T.S.A\:of\:cylinder=}968 \: cm^{2} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

 \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies 968=2 \times \frac{22}{7} \times 7(h +7) \\ \\ : \implies \frac{968}{44} =h+7\\ \\ :\implies h+7=22\\\\ :\implies h=22-7\\\\ \green{ : \implies \text{Height\: of \: cylinder} =15\: {cm} }\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{Volume\:of\:cylinder}=\pi r^{2}h}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions