Math, asked by zahizahi8861, 1 year ago

find the height of cylinder whose volume is 462 and radius is 3.5 CM​

Answers

Answered by Darsh05
3

Answer:

12 cm

Step-by-step explanation:

Volume of cylinder

 = \pi {r}^{2} h

Given,

Radius = 3.5 cm

Volume = 462 cm^{3}

 =  > 462 =  \frac{22}{7}   \times {3.5}^{2}  \times h \\  =  > 462 =  \frac{22}{7}  \times 12.25 \times h \\  =  > h =  \frac{462 \times 7}{22 \times 12.25}  \\  =  > h =  \frac{21}{1.75}  \\  =  > h =  \frac{2100}{175}  = 12 \: cm

Thanks!!

Please mark brainliest and follow me...

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=12\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 3.5\: cm} \\ \\ : \implies \text{Volume\:of\:cylinder=462 \: cm}^{3}\\ \\ \red{ \underline \bold{To \: Find : }}\\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ :\implies \text{Volume\: of \: cylinder} =\pi r^{2}h \\ \\ : \implies 462= \frac{22}{7} \times 3.5^{2}\times h \\ \\:\implies462\times7= 269.5\times h\\ \\ :\implies h=\frac{\cancel{3234}}{\cancel{269.5}}\\\\ \green{:\implies\text{Height\: of \: cylinder=12\: cm}}\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{T.S.A\:of\:cylinder}=2\pi r(h+r)}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions