Biology, asked by Anonymous, 1 year ago

Find the height of equilateral triangle whose side is 15 cm​

Answers

Answered by Anonymous
5

ANSWER :-

area \:  \: of \:  \: triangle  =   \frac{ \sqrt{3  }  {a}^{2} }{4}  \\  \\ =  \frac{ \sqrt{3} }{4}   \times 15 \times 15 \\  \\  =  \frac{225  \sqrt{3} }{4}  \\  \\ we \:  \: know \:  \: the \:  \: area \: of \:  \: triangle \:  \:  \\  \\  =  \frac{1}{2} \times b \times h \\  \\   \frac{225 \sqrt{3} }{4}   =  \frac{1}{2}  \times 15 \times h \\  \\ h =  \frac{225 \sqrt{3} }{4}  \times 2 \times  \frac{1}{15} \\  \\ h =  \frac{15 \sqrt{3} }{4}   \\  \\  h = 7.5 \sqrt{3}

Answered by Anonymous
15

» Side of equilateral triangle is 15 cm

_____________ [ GIVEN ]

• We have to find the height (h) of the equilateral triangle.

___________________________

We know that ..

Area of equilateral triangle = \dfrac{ \sqrt{3}  {a}^{2} }{4}

And area of triangle = \dfrac{1}{2} × b × h

\dfrac{1}{2} × b × h = \dfrac{ \sqrt{3}  {a}^{2} }{4}

And we have given side of triangle = a = 15 cm. Also base (b) = 15 cm

Put it in above formula

\dfrac{1}{2} × 15 × h = \dfrac{ \sqrt{3}  {(15)}^{2} }{4}

→ h = \dfrac{ \sqrt{3}  \:  \times  \: 225 \:  \times  \: 2}{4 \:  \times  \: 15}

→ h = \dfrac{ \sqrt{3}  \:  \times  \:450}{60}

→ h = 7.5\sqrt{3}

_______________________________

7.5\sqrt{3} is the height of the equilateral triangle.

_________ [ ANSWER ]

_______________________________

Similar questions