Find the height of the trapezium whose parallel sides are 77 cm and 60 cm and other sides are 25 cm and 26 cm
Answers
Answered by
0
Answer:
Draw AE || BC, through A.
Draw AF perpendicular to CD
For triangle ADE,
s = 21 cm,
Area of triangle ADE= = root s (s-a) (s-b) (s-c)
= root 21 * 7 * 8 *6
= 84 cm^2
1/2*base* height = 84 cm ^2
Height = 84*2/15 = 56/5
= 11.2 cm
Attachments:
chandru91:
Its wrong answer
Answered by
2
Answer:
24 cm
Step-by-step explanation:
Figure in attachment :
Let ABCD be our trapezium .
CD = 77 cm
AB = 60 cm
AD = 26 cm
BC = 25 cm
Let FC = x
In BFC,
BF² = BC² - FC²
⇒ h² = 25² - x² ........(1)
Also in ADE
AD² = DE² + AE²
⇒ 25² = h² + ( 77 - 60 - x )²
⇒ h² = 26² - ( 17 - x )² .........(2)
From 1 and 2 :
25² - x² = 26² - ( 17 - x )²
⇒ 25² - x² = 26² - ( 17² + x² - 34 x )
⇒ 625 - x² = 676 - 289 - x² + 34 x
⇒ 34 x = 238
⇒ x = 238/34 = 7
Now in BFC :
h² = 25² - x²
⇒ h² = 625 - 7²
⇒ h² = 625 - 49
⇒ h² = 576
⇒ h = 24
Hence height is 24 cm .
Attachments:
Similar questions