Math, asked by harleenkaur10670, 1 day ago

find the hieght of the right circular cylinder if its curved surface area is 176cm² and radius of base is 4 cm​

Answers

Answered by Ooguay
3

Answer:

Height = 7cm

Step-by-step explanation:

CSA of cylinder = 2πrh

∴ 2πrh = 176

⇒ 2 x \frac{22}{7} x 4 x h = 176

⇒  \frac{22}{7} x 4 x h = \frac{176}{2} = 88

⇒ 4 x h = \frac{176}{2} = 88 x \frac{7}{22} = 28

∴ h = \frac{28}{4} = 7cm

Answered by Anonymous
6

Answer:

Diagram :

Here is the diagram of cylinder. See this diagram from website Brainly.in.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{4\ cm}}\put(9,17.5){\sf{7\ cm}}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • »» Curved surface area of cylinder = 176 cm².
  • »» Radius of base of cylinder = 4 cm.

\begin{gathered}\end{gathered}

To Find :

  • »» Height of cylinder

\begin{gathered}\end{gathered}

Using Formula :

CSA of cylinder = 2πrh

  • »» CSA = Curved surface area
  • »» π = 22/7
  • »» r = radius
  • »»h = height

\begin{gathered}\end{gathered}

Solution :

\implies\footnotesize{\sf{CSA \:  of  \: cylinder = 2 \pi rh}}

\implies\footnotesize{\sf{176 = 2 \times  \dfrac{22}{7}  \times 4 \times h}}

\implies\footnotesize{\sf{176 = \dfrac{2 \times 22 \times 4}{7}\times h}}

\implies\footnotesize{\sf{176 = \dfrac{44 \times 4}{7}\times h}}

\implies\footnotesize{\sf{176 = \dfrac{176}{7}\times h}}

\implies\footnotesize{\sf{h = 176 \times  \dfrac{7}{176}}}

\implies\footnotesize{\sf{h = \cancel{176} \times  \dfrac{7}{\cancel{176}}}}

\implies\footnotesize{\sf{h =1 \times 7}}

\implies \footnotesize{\sf{\red{h =7 \: cm}}}

  • Hence, the height of cylinder is 7 cm.

\begin{gathered}\end{gathered}

Vefication :

\implies\footnotesize{\sf{CSA \:  of  \: cylinder = 2 \pi rh}}

\implies\footnotesize{\sf{176 = 2 \times  \dfrac{22}{7}  \times 4 \times 7}}

\implies\footnotesize{\sf{176 =  \dfrac{2 \times 22 \times 4 \times 7}{7}}}

\implies\footnotesize{\sf{176 =  \dfrac{44 \times 28}{7}}}

\implies\footnotesize{\sf{176 =  \dfrac{1232}{7}}}

\implies\footnotesize{\sf{176 =  \cancel{\dfrac{1232}{7}}}}

\implies\footnotesize{\sf{176 =  176 }}

\implies \footnotesize{\sf{\red{LHS = RHS}}}

  • Hence Verified!

\begin{gathered}\end{gathered}

Learn More :

Here is some formulas related to cylinder. See this latex from website Brainly.in.

\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}

\rule{220pt}{3.5pt}

Similar questions