Math, asked by deepthi2007, 2 months ago

find the highest common factor of the following




pls guys some help​

Attachments:

Answers

Answered by Seafairy
27

Given :

  1. \sf{18x^2 y^3, 20x^3 y^4,16x^2 y^2 }
  2. \sf{12x^2 y,15xy^2, 18x^2 y^2}

Explanation :

  • Highest common factor (HCF) of the terms can be found by spitting the terms into prime factors of the term and selecting the common values in all the terms for once.
  • For example if there are one a in first term , two a in the second term and five a in the third term the HCF of three terms will be one a.

Solution :

1. \sf{18x^2 y^3, 20x^3 y^4,16x^2 y^2 }

\sf{18x^2 y^3}\Rightarrow \displaystyle{2\times 2\times \times 3 \times x\times x \times y \times y\times y}

\sf{20x^3 y^4}\Rightarrow \displaystyle {2\times 2\times 5 \times x\times x \times x \times y\times y\times y\times y}

\sf{16x^2 y^2}\Rightarrow \displaystyle {2\times 2\times 2\times 2\times x\times x \times y\times y}

\implies \sf{2\times 2\times x \times x \times y\times y}

\boxed{\boxed{\sf{4x^2 y^2}}}

2. \sf{12x^2 y,15xy^2, 18x^2 y^2}

\sf{12x^2 y}\Rightarrow 2\times 2\times 3\times x\times \times x \times y

\sf{15xy^2 }\Rightarrow \displaystyle {3\times 5\times x\times y\times  y }

\sf{18x^2 y}\Rightarrow 2\times 3\times 3\times x \times x \times y\times y

\implies \sf{3 \times x \times y}

\boxed{\boxed{\sf{3xy}}}

Required Answer :

1. HCF of\sf{\:18x^2 y^3, 20x^3 y^4,16x^2 y^2 }is {\underline{\sf{4x^2 y^2}}}

2. HCF of\sf{\:12x^2 y,15xy^2, 18x^2 y^2} is {\underline{\sf{3xy}}}

Answered by MaitryiJoshi
1

Answer:

plz see the solution from the above pic

Step-by-step explanation:

plz mark as Brainlist and plz follow

Attachments:
Similar questions