Math, asked by dollyshinoj, 4 months ago

Find the hypotenuse of a right-angled triangle having perpendicular sides of 7 cm and 24 cm




need answers fast


please help if you know


offering more points

Answers

Answered by user9807
1

Answer:

Right angled triangle hypotenuse

Therefore, if the given triangle is right angled triangle. Then we can find it out by Pythagoras theorem

Pythagoras theorem = (hypotenuse)²= (base)²+ (height)²

Let us consider that the given right angled triangle is ∆ABC

(AB)²= (AC)²+(BC)²

(AB)²= (7)²+ (24)²

(AB)²= 49+ 576

(AB)²= 625

AB = √625

AB= 25

Therefore, measure of hypotenuse is 25 cm.

THANK YOU!

DO MARK ME AS BRAINLIEST IF IT HELPS YOU!

Answered by Anonymous
7

Appropriate Question-:

  • Find the hypotenuse of a right-angled triangle whose perpendicular side is of 7 cm and Base is of 24 cm .

AnswEr-:

  • \underline {\mathrm{\star{\red{ The\:Hypotenuse \:of\:Right \:Angled \:Triangle \:is\:25\:cm}}}}\\

Explanation-:

\mathrm {\bf{ Given -:}}\\

  • The Perpendicular of the Right angled triangle is 7 cm .

  • The Base of the Right angled triangle is 24 cm .

\mathrm {\bf{ To\:Find\: -:}}\\

  • The Hypotenuse of Right angled triangle.

\mathrm {\bf{ \dag{ Solution \:of\:Question \:-:}}}\\

  • \underbrace {\mathrm {\bf{ \underline { Understanding \:the\:Concept \:-:}}}}\\

  • We have to find Hypotenuse of Right angled triangle when Perpendicular and Base of Right angled triangle .

  • As, We know that By Putting the given Values [ Perpendicular and Base ] in the Pythagoras theorem.

  • By this, We can get the Hypotenuse of Right angled triangle.

____________________________________________

\mathrm {\bf{ \dag{\underline {Finding\:Hypotenuse \:of\:Right \:Angled \:Triangle \:by\:Applying\:Pythagoras \:Theorem  \:-:}}}}\\

As , We know that ,

  • \underline{\boxed{\star{\sf{\blue{ Pythagoras \:Theorem\: = \: (Base)^{2} + (Perpendicular)^{2} =(Hypotenuse) ^{2} }}}}}\\

\mathrm {\bf{ Here -:}}\\

  • The Perpendicular of the Right angled triangle is 7 cm .

  • The Base of the Right angled triangle is 24 cm .

Now , By Putting known Values in Pythagoras Theorem-:

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { (7)^{2} + (24)^{2} = (Hypotenuse)^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { 49 + (24)^{2} = (Hypotenuse)^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { 49 + 576 = (Hypotenuse)^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { 625 = (Hypotenuse)^{2} }}\\

Or ,

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { (Hypotenuse)^{2} = 625  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { Hypotenuse = \sqrt{625}  }}\\

  • \qquad \quad \qquad \quad \underline{\boxed{\mathrm{\pink { Hypotenuse = 25\:cm  }}}}\\

Hence,

  • \underline {\mathrm{\star{\red{ The\:Hypotenuse \:of\:Right \:Angled \:Triangle \:is\:25\:cm}}}}\\

__________________________________________________

\large { \boxed {\mathrm |\:\:{\underline {More \:To\:Know\:-:}}\:\:|}}

  • Pythagoras Theorem-: Pythagoras Theorem states that " In a Right angled triangle the sum of the square of Perpendicular and the square of the Base is always equal to the Square of Hypotenuse" .

  • \mathrm {\bf{ \dag{ Pythagoras \:Theorem\: = \: (Base)^{2} + (Perpendicular)^{2} =(Hypotenuse) ^{2}    }}}\\

___________________________________________________

Similar questions