Math, asked by nikichettri2009, 2 months ago

find the hypotenuse of the base and perpendicular of 6 cm and 8 cm ​

Answers

Answered by Anonymous
24

In a right angled triangle Base = 8 cm,

perpendicular = 6 cm.

By Pythagorous theorem.

∵ (Hypotenuse)² = (Perp)² + (Base)²

(Hypotenuse)² = 62 + 82

⇒ (Hypotenuse)² =36 + 64.

⇒ (Hypotenuse)² = 100,

∴ Hypotenuse = √100 = 10 cm.

Answered by ItzBrainlyBeast
29

\maltese\LARGE\textsf{\underline{ GiVeN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Base of the triangle = 6cm}

\qquad\tt{:}\longrightarrow\large\textsf{Perpendicular of the triangle = 8cm}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ To FiNd :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Hypotenuse of the triangle = ?}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ FoRmUla :-}}

\large\textsf{                                                               }

\large\texttt{ By Pythagoras Theorem :-}

\large\textsf{                                                               }

\qquad\tt{}\boxed{\large\textsf\textcolor{purple}{Hypotheses ² = Perpendicular ² + Base²}}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTioN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Hypotenuse² = 6² + 8²}

\qquad\tt{:}\longrightarrow\large\textsf{= 36 + 64 }

\qquad\tt{:}\longrightarrow\large\textsf{Hypotenuse ² = 100}

\qquad\tt{}\therefore\boxed{\large\textsf\textcolor{red}{Hypotenuse = √100}}

Similar questions