Physics, asked by satyamagarwal5664, 9 months ago

Find the (i) Maximum and (ii) Minimum Equivalent resistance, when 400Ω, 800 Ω, 1000 Ω and 2000 Ω resistors are connected?

Answers

Answered by rishu6845
3

Answer:

 \boxed{ \bold{  \pink{Maximum \: resistance = 4200 ohm}}} \\   \boxed{\bold{ \blue{Minimum \: resistance = 190.47ohm}}}

Explanation:

 \bold{ \underline{ \red{Given}}} \longrightarrow \\ four \: resistances \: 400ohm, \: 800hm ,\: 1000ohm ,\: 2000ohm \\ are \: connected \: to \: each \: other

 \bold{ \underline{ \red{To \: find}}} \longrightarrow \\ maximum \: and \: minimum \: value \: of \: resultant \: resistances

 \bold{ \underline{ \red{Concept \: used}}} \longrightarrow \\ we \: know \: that \: resultant \: resistance \: is \:  \\ maximum \: when \: we \: connect \: resistances \: in \: series \\ and \: minimum \: when \: we \: connect \\  \: resistances \: in \: parallel

 \bold{ \underline{ \red{solution}}} \longrightarrow \\ we \: get \: maximum \: combined \: resistance \\  \: when \: we \: connect \: resistances \: in \: series \\ maximum \: resultant \: resistane  \\  = 400 + 800 + 1000 + 2000 \\  = 4200ohm \\ now  \\ \:for \:  minimum \: resultant \: resistance \\  \: we \: connect \: all \: resistances \: in \: parallel \:  \\  \dfrac{1}{R}  =  \dfrac{1}{400}  +  \dfrac{1}{800}  +  \dfrac{1}{1000}  +  \dfrac{1}{2000}  \\  =  \dfrac{10 + 5 + 4 + 2}{4000}  \\  =  \dfrac{21}{4000}  \\ R =  \dfrac{4000}{21}  \\   R = 190.47ohm \\ minimum \: resultant \: resistances = 190.47ohm


ItzArchimedes: super
Similar questions