Math, asked by Sanskar15, 1 year ago

Find the image of the point P(-3,1) in theline 2x-3y=1.

Answers

Answered by parisakura98pari
0
there's formula  image of (h,k) in line ax+ by + c =0

x-h/ a = y - k/ b = -2(ah + bk +c)/a² + b²

so here h= -3  k = 1 a= 2 b = -3  c = -1

x- (-3) / 2 = y - 1/ -3 =  -2( 2(-3) -3(1) -1) / 4 + 9

solving gives x = -3/13  and  y = -41/13

hope my ans is correct
Answered by MissSolitary
1

 \underline{ \underline {{ \huge{ \red{ \tt{S}}}}{ \textbf{\textsf{OLUTION :-}}}}}

 \blue{ \sf \: Given \:  line \:  is  \: 2x - 3y = 4 \:  \:  \:  \:  \:  \: ...(i)} \\    :  \longrightarrow\blue{ \sf - 3y =  - 2x + 4} \\  : \longrightarrow \blue{ \sf \: y =  \frac{2}{3}x -  \frac{4}{3}  } \\  \\  \therefore \:  \blue{ \sf the \: slope \: of \: the \: line \:(i) =  \frac{2}{3}.}

From P, draw a perpendicular PM on line (i) produced to point P' so that P'M = MP, then P' will be the image of P on line (i) and the line (I) is the right bisector of the segment PP'.

 \blue{ \sf \: Let  \: P'  \: be  \: ( \alpha , \beta ).  } \\  \therefore \blue{ \sf{ \:Then \:  slope  \: of  \: PP' = \frac{ \beta  - 1}{ \alpha  + 3}  }}

 \blue{ \sf \: As \:  (i) \:  is \:  perpendicular  \: to  \: PP' , we \:  get} \\   : \longrightarrow \blue{ \sf \: \frac{ \beta  - 1}{ \alpha  + 3} \: .  \: \frac{2}{3}  =  - 1  } \\  \\   :  \longrightarrow \blue{ \sf \:  \frac{2 \beta  - 2}{3 \alpha  + 9}  =  - 1} \\  \\   :  \longrightarrow \blue{ \sf \:2 \beta  - 2 =   - 3 \alpha  - 9} \\  \\  :  \longrightarrow \blue{ \sf \:3 \alpha  + 2 \beta  + 7 = 0 \:  \:  \:  \:  \: ...(ii) }

Since,

 \boxed{ \blue{ \sf{Mid-point  \: of \:  PP'  \:  =  \: M( \frac{ \alpha  - 3}{2}  ,\frac{ \beta  + 1}{2} )}} }\\

  :  \longrightarrow \blue {\sf \:2. \frac{ \alpha  - 3}{2}  - 3. \frac{ \beta  + 1}{2} = 4  } \\  \\  :  \longrightarrow \blue{ \sf \:  \frac{2( \alpha  - 3) - 3( \beta  + 1)}{2} = 4 } \\  \\  :  \longrightarrow \blue {\sf \: 2 \alpha  - 6 - 3 \beta  - 3 = 4 \times 2} \\  \\  :  \longrightarrow \blue{ \sf \: 2 \alpha  - 3 \beta  - 9= 8} \\  \\ :  \longrightarrow  \blue{ \sf \: 2 \alpha  - 3 \beta  - 9 - 8 = 0} \\  \\ :  \longrightarrow  \blue{ \sf \: 2 \alpha  - 3 \beta  - 17 = 0 \:  \:  \:  \:  \:  \:  \: ...(iii)}

Now,

 \blue { \sf \: From \:  eq. (ii)  \: and \:  (iii),}  \\  :   \longrightarrow \blue{ \sf \: 3 \alpha  + 2 \beta  + 7 = 0 \:  \:  \:  \: } \times 3 \\  \blue{ \sf \:2 \alpha  - 3 \beta  - 17 = 0 \:  \:  } \times 2

⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀9α + 6β + 21 = 0

⠀⠀⠀⠀⠀⠀4α - 6β - 34 = 0

⠀⠀⠀⠀⠀(+)⠀(+)⠀(+)

⠀⠀⠀⠀⠀_______________

⠀⠀⠀⠀⠀⠀13α⠀⠀⠀- 13 = 0

⠀⠀⠀⠀⠀⠀

  :  \longrightarrow \blue { \sf \: 13 \alpha  - 13 = 0} \\  :   \longrightarrow \blue{ \sf \:13 \alpha   = 13 } \\  :   \longrightarrow \blue{ \sf  \:  \alpha  =  \frac{ \cancel{13}}{ \cancel{13}} } \\ \\    :   \longrightarrow  \boxed{\red{ \sf  \:  \alpha  = 1 \: .}}

 \blue{  \sf \:On  \: putting  \: the  \: value \:  of \:   \alpha  \:  in  \: eq. (ii), } \\  \\  :  \longrightarrow \blue{ \sf \: 3 \alpha  + 2 \beta  + 7 = 0} \\ :  \longrightarrow \blue{ \sf \: 3 \times 1 + 2 \beta  + 7 = 0} \\ :  \longrightarrow \blue{ \sf \:2 \beta  + 10 = 0 } \\ :  \longrightarrow \blue{ \sf \: 2 \beta  =  - 10} \\ :  \longrightarrow \blue{ \sf \:  \beta  =  -  \frac{ \cancel{10} {}^{5} }{ \cancel{2}} } \\  \\ :  \longrightarrow  \boxed{ \red{ \sf \: \beta  =  - 5 .} }

therefore,

The image of P = P'(1 , -5).

______________________

@MissSolitary✌️

________

Attachments:
Similar questions