Math, asked by StrongGirl, 7 months ago

Find the imaginary part of

((3 + 2 \sqrt{ - 54} ) ^{ \frac{1}{2} }  - (3 - 2 \sqrt{ - 54)} ^{ \frac{1}{2} })

Answers

Answered by chandresh126
22

Answer:

First, we will solve the (3+\sqrt[2]{-54} )

=>  (3+\sqrt[2]{-54} )

We can say √9 =3

So,

=> |  (\sqrt{9}+\sqrt[2]{-54}) | \\=>| \sqrt{9 + 216} |\\=> |\sqrt{225} |\\=> 15

Now,

=> (3+\sqrt[2]{-54})^{1/2} \\=> { (\sqrt{\frac{15 + 3}{2} } )+ (\sqrt{\frac{15 - 3}{2} } )\\\\ => ±(3+\sqrt{6} )\\\\So,\\=> (3+\sqrt[2]{-54})^{1/2} - (3-\sqrt[2]{-54})^{1/2}\\=> 6 or \sqrt[2]{6}

The imaginary part is => ± 2√6

Take a Look:

The heat of combustion of ethanol to give COz and water at constant pressure and 27°C is -327 kcal. How much heat is evolved in (cal) in combustion at the constant volume at 27°C ?

https://brainly.in/question/22084445

If a mango shrinks when kept in concentrate salt solution. then which of the following process take place ?

https://brainly.in/question/22084402

Answered by EnchantedGirl
28

TO FIND :-

the imaginary part of

((3 + 2 \sqrt{ - 54} ) ^{ \frac{1}{2} } - (3 - 2 \sqrt{ - 54)} ^{ \frac{1}{2} })

SOLUTION: -

\rightarrow (3+\sqrt[2]{-54} )(3+2−54)

\rightarrow (3+\sqrt[2]{-54} )(3+2−54)

\rightarrow √9 =3

So,

 | (\sqrt{9}+\sqrt[2]{-54}) |[tex] \\=| \sqrt{9 + 216} | [tex]\\= |\sqrt{225}| = 15

Now,

 (3+\sqrt[2]{-54})^{1/2} 》 { (\sqrt{\frac{15 + 3}{2} } )+ (\sqrt{\frac{15 - 3}{2} } )=> ±(3+\sqrt{6} )\\So,\\=> (3+\sqrt[2]{-54})^{1/2} - (3-\sqrt[2]{-54})^{1/2}\\=> 6 or \sqrt[2]{6}\\ \\ \\

》 imaginary \: part \: is =± 2√6

HOPE IT HELPS :)

Similar questions