find the integral factor dy/dx+y/x=3sinx
Answers
Answered by
22
Answer:
x
Step-by-step explanation:
Given :
To find :
Integral factor
Solution :
We know that, if DE is of the form, , then,
IF = Integrating factor
Here, P(x) = 1/x ; Q(x) = 3sinx
❖ Extra information :
⟡ Some basic integrals :
[Note : If there is any difficulty viewing this answer in app, kindly see this answer at website brainly.in through desktop mode. The link of this question is : https://brainly.in/question/45174871]
Hope it helps!!
Answered by
2
Answer:
Step-by-step explanation:
Given :
\mathrm{\dfrac{dy}{dx} + \dfrac{y}{x} = 3sinx}
dx
dy
+
x
y
=3sinx
To find :
Integral factor
Solution :
We know that, if DE is of the form, \boxed{\mathrm{\mathrm{\dfrac{dy}{dx} + P(x).y = Q(x)}}}
dx
dy
+P(x).y=Q(x)
, then, \boxed{\mathrm{IF = e^{\large{\text{$\mathrm{\int P(x) \, dx }$}}}}}
IF=e
∫P(x)dx
IF = Integrating factor
\longmapsto \mathrm{\dfrac{dy}{dx} + \dfrac{y}{x} = 3sinx}⟼
dx
dy
+
x
y
=3sinx
Here, P(x) = 1/x ; Q(x) = 3sinx
\implies \mathrm{IF = e^{\displaystyle {\int \dfrac{1}{x}dx}}}⟹IF=e
∫
x
1
dx
\implies \mathrm{IF = e^{logx}}⟹IF=e
logx
\implies \mathbf{\underline{IF = x}}⟹
IF=x
\therefore \underline{\boxed{\mathrm{Integrating\ Factor = x}}}}
❖ Extra information :
⟡ Some basic integrals :
\begin{gathered}\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}\end{gathered}
[Note : If there is any difficulty viewing this answer in app, kindly see this answer at website brainly.in through desktop mode. The link of this question is : https://brainly.in/question/45174871]
Hope it helps!!
Similar questions