Physics, asked by vveeramallikeerthi, 11 months ago

find the integral of the function with respect to x=e^5x+10​

Answers

Answered by BendingReality
11

Answer:

\displaystyle \longrightarrow \frac{e^{5x}}{5}+10x +C \\

Explanation:

Let :

\displaystyle \text{I} = \int\limits{\left(e^{5x}+10\right)} \, dx \\ \\

\displaystyle \text{I} = \int\limits{e^{5x}} \, dx+\int\limits{10} \, dx \\ \\

\displaystyle \text{I} = \int\limits{e^{5x}} \, dx+10\int\limits{1} \, dx \\ \\

Substituting u = 5 x

Diff. w.r.t  x :

\displaystyle \frac{du}{dx} =\frac{d}{dx} (5x) \\ \\

\displaystyle \longrightarrow \frac{du}{dx} =5 \\ \\

\displaystyle \longrightarrow dx=\frac{du}{5} \\ \\

\displaystyle \text{I} = \int\limits{e^{5x}} \, dx \\ \\

\displaystyle \longrightarrow \text{I} = \frac{1}{5} \int\limits{e^{u}} \, du \\ \\

\displaystyle \longrightarrow \text{I} = \frac{e^{u}}{5} \\ \\

\displaystyle \longrightarrow \text{I} = \frac{e^{5x}}{5} \\ \\

\displaystyle \text{I} =10\int\limits{1} \, dx \\ \\

\displaystyle \longrightarrow \text{I} =10x \\ \\

\displaystyle \longrightarrow \text{I} = \frac{e^{5x}}{5}+10x +C \\ \\

Hence we get required answer!

Similar questions