Math, asked by nandithasajeesh, 2 months ago

Find the integral of X + 1 ÷ 4 + 5x -x2

Answers

Answered by pppratibhasahu
0

Answer:

THE ANSWER IS 0

Step-by-step explanation:

THE ANSWER IS 0

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{x + 1}{4 + 5x -  {x}^{2} } \: dx

\rm  \:  =  \: -  \:\displaystyle\int\sf \: \dfrac{x + 1}{ {x}^{2}  - 5x - 4} dx

\rm  \:  =  \: -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{2x + 2}{ {x}^{2}  - 5x - 4} dx

\rm  \:  =  \: -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{2x  - 5 + 5+ 2}{ {x}^{2}  - 5x - 4} dx

\rm  \:  =  \: -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{2x  - 5 + 7}{ {x}^{2}  - 5x - 4} dx

\rm  \:  =  \: -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{2x  - 5}{ {x}^{2}  - 5x - 4}dx -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{7}{ {x}^{2}  - 5x - 4}dx

\rm  \:  =  \: \:I_1 + I_2

where,

\rm :\longmapsto\:I_1 = -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{2x  - 5}{ {x}^{2}  - 5x - 4}

and

\rm :\longmapsto\:I_2 = -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{7}{ {x}^{2}  - 5x - 4}

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{x + 1}{4 + 5x -  {x}^{2} } \: dx = I_1 + I_2 -  -  - (1)

Now,

Consider,

\rm :\longmapsto\:I_1 = -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{2x  - 5}{ {x}^{2}  - 5x - 4} dx

we know,

 \boxed{ \sf{ \: \displaystyle\int\sf \: \dfrac{\dfrac{d}{dx}f(x) }{f(x)} =  log(f(x)) + c}}

\rm :\longmapsto\:2x - 5 = \dfrac{d}{dx} ( {x}^{2} - 5x - 4)

So, given integral, can be rewritten as

\rm :\longmapsto\:I_1 = -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{ \dfrac{d}{dx} ( {x}^{2}  - 5x - 4)}{ {x}^{2}  - 5x - 4} dx

\rm :\implies\:I_1 =  - \dfrac{1}{2}log | {x}^{2} - 5x - 4 |  -  -  - (2)

Now,

Consider,

\rm :\longmapsto\:I_2 = -  \dfrac{1}{2}  \:\displaystyle\int\sf \: \dfrac{7}{ {x}^{2}  - 5x - 4} dx

\rm  \:  =  \: \: -  \dfrac{7}{2}  \:\displaystyle\int\sf \: \dfrac{1}{ {x}^{2}  - 5x - 4} dx

\rm  \:  =  \: \: -  \dfrac{7}{2}  \:\displaystyle\int\sf \: \dfrac{1}{ {x}^{2}  - 5x  + {\bigg(\dfrac{5}{2}  \bigg) }^{2} - {\bigg(\dfrac{5}{2}  \bigg) }^{2}  - 4} dx

\rm  \:  =  \: \: -  \dfrac{7}{2}  \:\displaystyle\int\sf \: \dfrac{1}{ {\bigg(x - \dfrac{5}{2}  \bigg) }^{2} - {\bigg(\dfrac{25}{4}  \bigg) }  - 4} dx

\rm  \:  =  \: \: -  \dfrac{7}{2}  \:\displaystyle\int\sf \: \dfrac{1}{ {\bigg(x - \dfrac{5}{2}  \bigg) }^{2} - {\bigg(\dfrac{25 + 16}{4}  \bigg) } } dx

\rm  \:  =  \: \: -  \dfrac{7}{2}  \:\displaystyle\int\sf \: \dfrac{1}{ {\bigg(x - \dfrac{5}{2}  \bigg) }^{2} - {\bigg(\dfrac{41}{4}  \bigg) } } dx

\rm  \:  =  \: \: -  \dfrac{7}{2}  \:\displaystyle\int\sf \: \dfrac{1}{ {\bigg(x - \dfrac{5}{2}  \bigg) }^{2} - {\bigg(\dfrac{ \sqrt{41} }{2}  \bigg) } ^{2}  } dx

\rm  \:  =  \: \: - \dfrac{7}{2} \times \dfrac{1}{2 \times \dfrac{ \sqrt{41} }{2} } log \bigg |\dfrac{x - \dfrac{5}{2}  - \dfrac{ \sqrt{41} }{2} }{x - \dfrac{5}{2}  + \dfrac{ \sqrt{41} }{2} } \bigg|

\rm  \:  =  \: \: - \dfrac{7}{2 \sqrt{41} } log \bigg |\dfrac{2x -5 -  \sqrt{41}  }{2x -  5 +  \sqrt{41} } \bigg|  -  -  - (3)

Now, on substituting the values from equation (2) and (3) in equation (1), we get

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{x + 1}{4 + 5x -  {x}^{2} } \: dx = I_1 + I_2

\rm  \:  =- \dfrac{1}{2}log | {x}^{2} - 5x - 4 |\: - \dfrac{7}{2 \sqrt{41} } log \bigg |\dfrac{2x -5 -  \sqrt{41}  }{2x -  5 +  \sqrt{41} } \bigg| + c

Additional Information :-

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ {x}^{2}  -  {a}^{2} }  =  \dfrac{1}{2a}log | \frac{x - a}{x + a} |  + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  =\dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a}    + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ \sqrt{ {x}^{2} +  {a}^{2}  } }  =  log |x +  \sqrt{ {x}^{2}  +  {a}^{2} } | + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}  } }  =  log |x +  \sqrt{ {x}^{2} - {a}^{2} } | + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}\dfrac{x}{a}  + c}

 \boxed{\displaystyle\int\sf \:  \sqrt{ {x}^{2}  +  {a}^{2} }  \: {dx}  = \dfrac{x}{2} \sqrt{ {x}^{2}  +  {a}^{2} } + \dfrac{ {a}^{2} }{2}log |x +  \sqrt{ {x}^{2} +  {a}^{2} } |    + c}

 \boxed{\displaystyle\int\sf \:  \sqrt{ {x}^{2}  - {a}^{2} }  \: {dx}  = \dfrac{x}{2} \sqrt{ {x}^{2} - {a}^{2} }  -  \dfrac{ {a}^{2} }{2}log |x +  \sqrt{ {x}^{2} -  {a}^{2} } |+ c}

Similar questions