Math, asked by ads45, 2 months ago

Pls solve this i'll thank you and the first to give right ans I'll mark them brainliets

Attachments:

Answers

Answered by 12thpáìn
5

Question

  • \sf If~ 3^x = 2^y , then\ the \ value\ of\   \:  \bf\sqrt[y]{ {243}^{x} }

Solution

   \:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ {243}^{x}} \\

  • Convert 243 into its prime factors

   \:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ (3 \times 3 \times 3 \times 3 \times 3)^{x}}

  • \\\gray{\sf {a}^{m} \times {a}^{n} = {a}^{m + n}} \\

  \:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ ( {3}^{1 + 1 + 1 + 1 + 1} )^{x}}

 \:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ ( {3}^{5} )^{x}}

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ ( 3)^{  x \times 5}}

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ ( {3}^{x})^{  5}}

  •  \sf~~ putting \: 3^x = 2^y \: that \: is \: given

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{ (  {2}^{y} )^{  5}}

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf\sqrt[y]{  {2}^{ 5y}}

{~~~~~\bigstar~~~~\gray{\sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m}}

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf {2}^{ \frac{5\cancel{y}}{\cancel{y}} }

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf {2}^{ 5 }

\:  \:  \:  \:  \:  :  \:  \:  \implies \: \sf 32 \\  \\  \\  \\

 \:  \: \bold{\sqrt[y]{ {243}^{x}} = 32} \\  \\  \\  \\  \\  \\

_____________________

\small\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

_____________________

Similar questions