Math, asked by PragyaTbia, 1 year ago

Find the integrals (primitives):
\rm \displaystyle\int \cos 2x.\cos 4x.\cos 6x \ dx

Answers

Answered by villageboy
0
❤See in the given pic it is been solved:)
Attachments:
Answered by sk940178
1

Answer:

\frac{x}{4}+\frac{Sin4x}{16}+\frac{Sin8x}{32} +\frac{Sin12x}{48} +C

Step-by-step explanation:

We have find the value of

\int\ {Cos2x.Cos4x.Cos6x} \, dx

=\frac{1}{2} \int\ {(2Cos2x.Cos4x).Cos6x} \, dx

=\frac{1}{2} \int\ {(Cos6x+Cos2x).Cos6x} \, dx

Since, we know the formula, 2CosA.CosB=Cos(A+B)+Cos(A-B)

=\frac{1}{2} \int\ {Cos^{2}6x } \, dx +\frac{1}{2} \int\ {Cos2x.Cos6x} \, dx

Again applying the formula, 2CosA.CosB=Cos(A+B)+Cos(A-B) and

Cos2x=2Cos²x-1

=\frac{1}{4} \int\ {2Cos^{2}6x } \, dx +\frac{1}{4} \int\ {(Cos8x+Cos4x)} \, dx

=\frac{1}{4} \int\ {(1+Cox12x)} \, dx +\frac{1}{4} \int\ {(Cos8x+Cos4x)} \, dx

=\frac{1}{4} [x+\frac{Sin12x}{12}]+\frac{1}{4} [\frac{Sin8x}{8} +\frac{Sin4x}{4}]+C

Where C is an integration constant.

=\frac{x}{4}+\frac{Sin4x}{16}+\frac{Sin8x}{32} +\frac{Sin12x}{48} +C

Similar questions