Math, asked by PragyaTbia, 1 year ago

Find the integrals (primitives):
\rm \displaystyle\int \sin^{3}x.\cos^{3}x  \ dx

Answers

Answered by hukam0685
0
We know that

 {cos}^{2} x = 1 - {sin}^{2} x \\ \\
\int \sin^{3}x.\cos^{3}x \ dx \\ \\\int \sin^{3}x.\cos^{2}x \: cos \: x\ dx \\ \\ \\\int \sin^{3}x.(1 - sin^{2}x) \: cos \: x\ dx \\ \\
let
sin \: x = t \\ \\ cos \: x \: dx = dt \\ \\
\int t^{3}.(1 - t^{2}) dt \\ \\ \int t^{3}dt \: - \int t^{5} \: dt = \frac{ {t}^{4} }{4} - \frac{ {t}^{6} }{6} + C \\ \\ redo \: substitution \\ \\ \int \sin^{3}x.\cos^{3}x \ dx = \frac{ {sin}^{4}x }{4} - \frac{ {sin}^{6}x }{6} + C \\ \\
Hope it helps you.
Similar questions