Math, asked by PragyaTbia, 1 year ago

Find the integrals (primitives):
\rm \displaystyle\int \frac{3x-7}{x+1} \ dx

Answers

Answered by hukam0685
0
Such type of expression can be easily integrated with the help of substitution Method of integration

let \: x + 1 = t \\ \\ dx = dt \\ \\ x = t - 1 \\ \\
\int \frac{3x-7}{x+1} \ dx = \int \: \frac{3(t - 1) - 7}{t} dt \\ \\ = \int \: \frac{3t - 3 - 7}{t} dt \\ \\ = \int \frac{3t}{t} \: dt - \int \: \frac{10}{t} dt \\ \\ = \int \: 3 \: dt \: - 10\int \: \frac{1}{t} dt \\ \\ = 3t - 10 \: log \: t + C \\ \\
redo substitution

\int \frac{3x-7}{x+1} \ dx= 3(x + 1)- 10 \: log \: (x + 1)+ C \\ \\
Hope it helps you.
Similar questions