Math, asked by PragyaTbia, 1 year ago

Find the integrals (primitives):
\rm \displaystyle\int (\sin x-\cos x)^{2}  \ dx

Answers

Answered by Anonymous
2
here is ur answer ☺️☺️☺️☺️
Attachments:
Answered by hukam0685
0
We know that

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  \\ ( {sin \: x - cos \: x)}^{2} =  {cos}^{2}x +  {sin}^{2}x - 2sin \: x \: cos \: x    \\  \\ ( {sin \: x - cos \: x)}^{2} = 1 - 2sin \: x \: cos \: x \\  \\   ( {sin \: x - cos \: x)}^{2} = 1 - sin \: 2x \\  \\
\int (\sin x-\cos x)^{2} \ dx = \int 1 - \: sin \: 2x\\  \\  = \int1.dx - \int \: sin \: 2x \: dx \\  \\  = x - \int \: sin \: 2x \: dx \\  \\ let \: 2x = t \\  \\ dx =  \frac{1}{2} dt \\  \\  = x -  \frac{1}{2} \int \: sin \: t \: dt\\ \\  = x -  \frac{1}{2} ( - cos \: t) + c \\  \\ \int (\sin x-\cos x)^{2} \ dx = x +  \frac{1}{2} cos \: 2x + c \\  \\
Hope it helps you.
Similar questions