Math, asked by dineshshaw500, 10 months ago

Find the integration, the area of the ellipse 16x^2+25y^2=400?

Answers

Answered by msasomrat
0

Answer:

set the limit.

Step-by-step explanation:

Answered by ribhur2102
0

Given,

16x^{2} + 25y^{2}  = 400

To find ,

Area of the ellipse

Solution,

The formula to find the area of the ellipse is

\int\limits^x_y {y} \, dx

First write the given equation :

16x^{2} + 25y^{2}  = 400

First we need to find the value of y :

25y^{2}  = 400 - 16x^{2}

Now find the y value by dividing the  400 - 16x^{2} with 25 and apply square root to the right hand side :

y = \sqrt{\frac{400 - 16x^{2} }{25} }---------(1)

Now again take the equation :

16x^{2} + 25y^{2}  = 400 --------(2)

Divide the equation (2) with 400

\frac{16x^{2} }{400}  + \frac{25y^{2} }{400} = \frac{400}{400}

\frac{x^{2} }{25}  + \frac{y^{2} }{16} = 1

Area of ellipse :

\frac{4}{5} \int\limits^5_0 {y} \, dx  =  \frac{4}{5} \int\limits^5_0 {\sqrt{400 - 16x^{2} } } \, dx --------(3)

Equation (3) is in the form of formula :

Integration of \sqrt{a^{2} - x^{2}  }

substitute in the above formula :

\frac{4}{5 } \int\limits^5_0 {\sqrt{16( 25 - x^{2} } } \, dx=   \frac{16}{5} \int\limits^5_0 {\sqrt{5^{2}  - x^{2} } } \, dx

                              = \frac{16}{5} [ \frac{x}{2} \sqrt{25 - x^{2} }  + \frac{25}{2} sin^{-1} (\frac{x}{5} )] 0 to 5

By substituting the limits 0 and 5 we get :

                              = \frac{16}{5} [ \frac{25}{2} ,\frac{\pi }{2} ]

                               = 20\pi  

Hence the area of the ellipse = 20\pi

Similar questions