Physics, asked by surajsahu001122, 2 months ago

Find the intensity of the electric field due to the linear charge by the law of gauss and prove that the electric field is inversely proportional to the distance?​

Answers

Answered by nirman95
4

Electric Field Intensity due to linear charge:

  • Let's assume that an infinite linear charge with uniform linear charge density \lambda.

  • Now, we will consider a CYLINDRICAL GAUSSIAN SURFACE as follows:

  • ''q" refers to enclosed charge.

Applying Gauss' Law:

 \rm  \displaystyle\oint  \vec{E}. \vec{ds} =  \dfrac{q}{  \epsilon_{0} }

 \rm  \implies \displaystyle\oint  E \times ds  \times  \cos( {0}^{ \circ} )   =  \dfrac{q}{  \epsilon_{0} }

 \rm  \implies \displaystyle\oint  E \times ds  =  \dfrac{  \lambda \times l }{  \epsilon_{0} }

 \rm  \implies \displaystyle E  \oint ds  =  \dfrac{  \lambda \times l }{  \epsilon_{0} }

 \rm  \implies \displaystyle E \times (2\pi rl)  =  \dfrac{  \lambda \times l }{  \epsilon_{0} }

 \rm  \implies \displaystyle E  =  \dfrac{  \lambda }{ 2\pi r \epsilon_{0} }

 \rm  \implies \displaystyle E   \propto \:  \dfrac{1}{r}

[Hence Proved].

Attachments:
Similar questions