Math, asked by karansinghsaggu, 7 days ago

Find the intervals of strictly increasing and decreasing for the function

f(x) =  {4sin}^{3}x -  {6sin}^{2}x + 12sinx + 6 \: in \: (0 \: to \: \pi)

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  {4sin}^{3}x -  {6sin}^{2}x + 12sinx + 6 \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx} f(x) = \dfrac{d}{dx}[ {4sin}^{3}x -  {6sin}^{2}x + 12sinx + 6] \\

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\  \\ \boxed{\tt{ \dfrac{d}{dx}sinx \:  =  \: cosx \: }}  \\

So, using these Identities, we get

\rm \: f'(x) = 12 {sin}^{2}x(cosx) - 12sinx(cosx) + 12cosx + 0

\rm \: f'(x) = 12cosx[ {sin}^{2}x - sinx + 1 ] \\

Now, we know that, for a quadratic expression f(x) = ax² + bx + c, if a > 0 and Discriminant, D = b² - 4ac < 0, then f(x) > 0.

Now, for the expression sin²x - sinx + 1, the coefficient of sin²x is 1 ( > 0 ) and Discriminant, D = 1 - 4 = - 3 < 0

So, it means

\rm \:  {sin}^{2}x - sinx + 1  &gt; 0\\

So, increasing and decreasing depends on sign of cosx.

\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval &amp; \bf Sign \: of \: f'(x) \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf \bigg(0,\dfrac{\pi}{2}\bigg) &amp; \sf  + ve \\ \\ \sf \bigg(\dfrac{\pi}{2}, \: \pi\bigg) &amp; \sf  - ve \end{array}} \\ \end{gathered} \\

So, For strictly increasing,

\rm \: f'(x)  &gt;  0

\rm\implies \:x \:  \in \: \bigg(0, \: \dfrac{\pi}{2}\bigg) \\

And, For strictly decreasing,

\rm \: f'(x)  &lt;  0

\rm\implies \:x \:  \in \: \bigg(\dfrac{\pi}{2}, \: \pi\bigg) \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Anonymous
23

Given :

 \sf{f(x) = {4 \: sin}^{3}x - {6sin}^{2}x + 12sinx + 6 \: in \: (0 \: to \: \pi)}

So,

 \sf{f'(x) = {12 \: sin}^{2}x.cos \: x + 12 \: cos \: x ]}

\sf{= 12 \: cos \: x[si {n}^{2} x - sin \: x + 1]}

As -1 ≤ sin x ≤ 1,

\sf\implies{ f'(x) = 12 \: cos \: x[si {n}^{2} x + (1 - sin \: x)]..(i) ]}

As sin² x + 1-sinx ≥ 0

Therefore,

\sf{1-sin \: x ≥ 0, also  \: si {n}^{2} x ≥ 0}

Hence ,

  • f'(x)>0, when cos x>0 i.e.

\sf\implies{ x \: ∈( \frac{ - \pi}{2}, \frac{\pi}{2}) }

and

  • f'(x) <0, when cosx <0 i.e.,

\sf\implies{ x \: ∈( \frac{ \pi}{2}, \frac{3\pi}{2}) }

When,

\sf\implies{ x \: ∈( \frac{ - \pi}{2}, \frac{\pi}{2}) }

  • then f(x) is increasing

When,

\sf\implies{ x \: ∈( \frac{ \pi}{2}, \frac{3\pi}{2}) }

  • then f(x) is decreasing

Since,

\sf{( \frac{ - \pi}{2},\pi})∈( \frac{ \pi}{2}, \frac{3\pi}{2})

  • Therefore, f (x) is decreasing in

\sf\implies{( \frac{ - \pi}{2},\pi})

Attachments:
Similar questions