Math, asked by kaushik05, 8 months ago

Find the intervals of values of 'a' for which the line y+x=0 bisects two chords drawn from a point ,
( \frac{1 +  \sqrt{2} a}{2} , \:  \frac{1 -  \sqrt{2}a }{2} )
to the circle
2 {x}^{2}  + 2 {y}^{2}  - (1 +  \sqrt{2} a)x - (1 -  \sqrt{2} a)y = 0

Answers

Answered by shadowsabers03
21

The equation of the circle is,

\longrightarrow\sf{2x^2+2y^2-(1+a\sqrt2)x-(1-a\sqrt2)y=0}

Dividing by 2,

\longrightarrow\sf{x^2+y^2-\left(\dfrac{1+a\sqrt2}{2}\right)x-\left(\dfrac{1-a\sqrt2}{2}\right)y=0}

Adding \sf{\dfrac{1+2a^2}{8}} to both sides,

\longrightarrow\sf{x^2+y^2-\left(\dfrac{1+a\sqrt2}{2}\right)x-\left(\dfrac{1-a\sqrt2}{2}\right)y+\dfrac{1+2a^2}{8}=\dfrac{1+2a^2}{8}}

\longrightarrow\sf{\left(x-\dfrac{1+a\sqrt2}{4}\right)^2+\left(y-\dfrac{1-a\sqrt2}{4}\right)^2=\dfrac{2a^2+1}{8}}

Now the equation is in the form \sf{(x-\alpha)^2+(y-\beta)^2=r^2,} where (\alpha,\ \beta) is the center of the circle of radius \sf{r.}

Thus we get,

\longrightarrow\sf{(\alpha,\ \beta)=\left(\dfrac{1+a\sqrt2}{4},\ \dfrac{1-a\sqrt2}{4}\right)}

\longrightarrow\sf{r=\dfrac{\sqrt{2a^2+1}}{2\sqrt2}}

We can see that one solution to the equation of the circle is \sf{\left(\dfrac{1+a\sqrt2}{2},\ \dfrac{1-a\sqrt2}{2}\right).} Hence it is a point on the circle, from which two chords are drawn to the circle which are bisected by \sf{x+y=0,} whose points are in the form \sf{(k,\ -k).}

In the fig., BD and BE are such two chords where \sf{B\left(\dfrac{1+a\sqrt2}{2},\ \dfrac{1-a\sqrt2}{2}\right),} and \sf{A\left(\dfrac{1+a\sqrt2}{4},\ \dfrac{1-a\sqrt2}{4}\right)} is the center of the circle. \sf{F(k,\ -k)} is the midpoint of the chord BE which lies on the line \sf{x+y=0.}

Since \sf{AF\perp BE,} their slopes give a product of -1.

\longrightarrow\sf{\left(\dfrac{\dfrac{1-a\sqrt2}{4}+k}{\dfrac{1+a\sqrt2}{4}-k}\right)\left(\dfrac{\dfrac{1-a\sqrt2}{2}+k}{\dfrac{1+a\sqrt2}{2}-k}\right)=-1}

\longrightarrow\sf{\left(\dfrac{1+4k-a\sqrt2}{1-4k+a\sqrt2}\right)\left(\dfrac{1+2k-a\sqrt2}{1-2k+a\sqrt2}\right)=-1}

\longrightarrow\sf{\dfrac{1+4k-a\sqrt2}{1-4k+a\sqrt2}=\dfrac{2k-a\sqrt2-1}{2k-a\sqrt2+1}}

\longrightarrow\sf{\dfrac{1+(4k-a\sqrt2)}{1-(4k-a\sqrt2)}=\dfrac{(2k-a\sqrt2)-1}{(2k-a\sqrt2)+1}}

So by rule of componendo and dividendo,

\longrightarrow\sf{4k-a\sqrt2=-\dfrac{1}{2k-a\sqrt2}}

\longrightarrow\sf{(4k-a\sqrt2)(2k-a\sqrt2)=-1}

\longrightarrow\sf{8k^2-6ak\sqrt2+(2a^2+1)=0}

This is a quadratic equation in two variables \sf{a} and \sf{k,} whose discriminant should be non - negative. Thus with respect to \sf{k,}

\longrightarrow\sf{(-6a\sqrt2)^2-(4\times8(2a^2+1))\geq0}

\longrightarrow\sf{72a^2-32(2a^2+1)\geq0}

\longrightarrow\sf{8a^2-32\geq0}

\longrightarrow\sf{a^2-4\geq0}

\longrightarrow\sf{(a-2)(a+2)\geq0}

\Longrightarrow\sf{a\leq-2\quad OR\quad a\geq2}

Therefore,

\longrightarrow\large\textsf{$\sf{\underline{\underline{a\in(-\infty,\ -2\,]\cup[\,2,\ \infty)}}}$}

Attachments:

kaushik05: Thanks
Answered by queen2428
5

hope thsi will help uu..//##

Attachments:
Similar questions