Math, asked by hasidsaasd, 2 months ago

Find the intervals where the function f(x)=xe^-x is concave up and concave down. Also find the point of inflection.

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{f(x)=x\,e^{-x}}

\underline{\textbf{To find:}}

\textsf{The intervals where f(x) concave up and concave down}

\textsf{and point of inflection}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{f(x)=x\,e^{-x}}

\mathsf{f'(x)=-xe^{-x}+e^{-x}}

\mathsf{f''(x)=-[-xe^{-x}+e^{-x}]-e^{-x}}

\mathsf{f''(x)=xe^{-x}-e^{-x}-e^{-x}}

\mathsf{f''(x)=xe^{-x}-2\,e^{-x}}

\mathsf{f''(x)=(x-2)e^{-x}}

\mathsf{f''(x)=0\implies\;(x-2)e^{-x}=0\implies\;x-2=0}

\implies\mathsf{x=2}

\textsf{Divide the real line into two intervals}\;\mathsf{(-\infty,2)\;\&\;(2,\infty)}

\begin{array}{|c|c|c|}\cline{1-3}\textsf{Interval}&\mathsf{Sign\;of\;f''(x)}&\mathsf{Concavity}\\\cline{1-3}(-\infty,2)&-&\mathsf{Concave\;downward}\\(2,\infty)&+&\mathsf{Concave\;upward}\\\cline{1-3}\end{array}

\textsf{The second derivative f''(x) changes it sign from - to + when}

\textsf{passing through x=2}

\therefore\textsf{Point of inflection is (2,f(2))}

\implies\mathsf{(2,2\,e^{-2})}

\implies\boxed{\mathsf{\left(2,\dfrac{2}{e^2}\right)}}

Similar questions