Math, asked by Googoleplex, 1 month ago

find the invers of this function:
f(x)=(2x+3)/\sqrt{x^2-1} \\

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \rm \: f(x) =  \frac{2x + 3}{ \sqrt{ {x}^{2}  - 1} }  \\

Let \rm\:y=f^{-1}(x)\implies\:f(y)=x

So ,

 \rm \: f(y) =  \frac{2y+ 3}{ \sqrt{ {y}^{2}  - 1} } = x  \\

 \rm \:  \implies  \frac{2y+ 3}{ \sqrt{ {y}^{2}  - 1} } = x  \\

 \rm \:  \implies \bigg(  \frac{2y+ 3}{ \sqrt{ {y}^{2}  - 1} }  \bigg)^{2} = x^{2}   \\

 \rm \:  \implies  \frac{(2y+ 3)^{2} }{ {y}^{2}  - 1} = x^{2}   \\

 \rm \:  \implies  \frac{4y^{2} + 12y + 9}{ {y}^{2}  - 1} = x^{2}   \\

 \rm \:  \implies  4y^{2} + 12y + 9= x^{2} ( {y}^{2}  - 1)  \\

 \rm \:  \implies  4y^{2} + 12y + 9= x^{2} {y}^{2}  -  {x}^{2}   \\

 \rm \:  \implies ( 4 -  {x}^{2}) y^{2} + 12y + (9 +   {x}^{2}) = 0   \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{(12) ^{2}  - 4(4 -  {x}^{2} )(9 +  {x}^{2} )}}{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{144   +  4(  {x}^{2} - 4 )(  {x}^{2} + 9) } }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{144   +  4 \{  {x}^{4} + 9 {x}^{2}  - 4 {x}^{2}  - 36 \}  } }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{144   +  4 (  {x}^{4} + 5 {x}^{2}    - 36 ) } }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{144   +  4  {x}^{4} + 20 {x}^{2}    - 144} }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{  4  {x}^{4} + 20 {x}^{2}   } }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm \sqrt{  4  {x}^{2}( {x}^{2}  + 5)    } }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ - 12 \pm2x \sqrt{  {x}^{2}  + 5    } }{2(4 -  {x}^{2}) }    \\

 \rm \:  \implies  \: y =  \frac{ -  6 \pm x \sqrt{  {x}^{2}  + 5    } }{4 -  {x}^{2}}    \\

 \rm \:  \implies  \: y =  \frac{  6 \mp x \sqrt{  {x}^{2}  + 5    } }{ {x}^{2} - 4}    \\

so,

We have,

 \rm \:  \implies  \: f ^{ - 1}(x)  =  \frac{  6  +   | x \sqrt{  {x}^{2}  + 5    }  | }{ {x}^{2} - 4}    \\

Similar questions