Math, asked by saisnigdhakodukula, 6 months ago

find the inverse laplace transform of 1/(s+3)^5​

Answers

Answered by hukam0685
47

Step-by-step explanation:

Given:

 \frac{1}{ {(s+3)}^{5} }  \\

To find: Compute inverse Laplace of given function.

Solution:

Formula used:

\bold{\red{ {£}^{ - 1}   \left( \frac{1}{(s - a)^{n} } \right) =  \frac{ {e}^{at} {t}^{n - 1}  }{(n - 1)!} }} \\

Use the above formula

 {£}^{ - 1}   \left( \frac{1}{(s +3)^{5} } \right) =  \frac{ {e}^{-3t} {t}^{5 - 1}  }{(5- 1)!}   \\ \\  {£}^{ - 1}   \left( \frac{1}{(s +3)^{5} } \right) =  \frac{ {e}^{-3t} {t}^{4}  }{(4)!} \\   \\ {£}^{ - 1}   \left( \frac{1}{(s +3)^{5} } \right) =  \frac{ {e}^{-3t} {t}^{4}  }{24}

Final answer:

\bold{\green{{£}^{ - 1}   \left( \frac{1}{(s +3)^{5} } \right) =  \frac{ {e}^{-3t} {t}^{4}  }{24}}}\\

Hope it helps you.

To learn more on brainly:

1) Compute the inverse laplace transform of 7/(s-1)^3

https://brainly.in/question/22423169

2) using laplace transform solve y''+5y'+6y=2 given y(0)=0 y'(0)=0

https://brainly.in/question/33145154

Similar questions