Math, asked by robiterang7234, 9 months ago

Find the inverse of the following matrix by using row elementary transformation ( 231 341 372)

Answers

Answered by amitnrw
1

Given :    A = \left[\begin{array}{ccc}2&3&1\\3&4&1\\3&7&2\end{array}\right]  

To Find : A⁻¹   using row elementary transformation

Solution:

A = A I

\left[\begin{array}{ccc}2&3&1\\3&4&1\\3&7&2\end{array}\right]   =  A  \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]  

R₃  → R₃ - R₂

\left[\begin{array}{ccc}2&3&1\\3&4&1\\0&3&1\end{array}\right]   =  A  \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&-1&1\end{array}\right]  

R₁  → R₁ - R₃

\left[\begin{array}{ccc}2&0&0\\3&4&1\\0&3&1\end{array}\right]   =  A  \left[\begin{array}{ccc}1&1&-1\\0&1&0\\0&-1&1\end{array}\right]  

R₁  → R₁ /2

\left[\begin{array}{ccc}1&0&0\\3&4&1\\0&3&1\end{array}\right]   =  A  \left[\begin{array}{ccc}1/2&1/2&-1/2\\0&1&0\\0&-1&1\end{array}\right]  

R₂ →  R₂  - R₃

\left[\begin{array}{ccc}1&0&0\\3&1&0\\0&3&1\end{array}\right]   =  A    \left[\begin{array}{ccc}1/2&1/2&-1/2\\0&2&-1\\0&-1&1\end{array}\right]  

R₂ →  R₂  - 3R₁

\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&3&1\end{array}\right]   =  A      \left[\begin{array}{ccc}1/2&1/2&-1/2\\-3/2&1/2&1/2\\0&-1&1\end{array}\right]  

R₃  → R₃ - 3R₂

\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]     =  A    \left[\begin{array}{ccc}1/2&1/2&-1/2\\-3/2&1/2&1/2\\9/2&-5/2&-1/2\end{array}\right]  

I = AA⁻¹

A⁻¹  =   \left[\begin{array}{ccc}1/2&1/2&-1/2\\-3/2&1/2&1/2\\9/2&-5/2&-1/2\end{array}\right]  

Learn More:

If a=matrix 2,3,5,-2 write a inverse in terms of a - Brainly.in

https://brainly.in/question/3109606

If A= matrix [ 2 1 1 1 0 1 0 2 -1],find the inverse of A using elementary ...

https://brainly.in/question/17274361

Similar questions