Math, asked by itzvishujat, 1 year ago

find the inverse of the matrix using elementary operations?

Attachments:

Answers

Answered by Anonymous
7

HOLA MATE !!!

HOPE THIS HELPS YOU ...


Answer:

This can be solved by either row operation or by coloumn peration ,but now I am going to use row operation which showa that . A=IA

Step-by-step explanation:

We have to find the inverse of the matrix ,

\left[\begin{array}{ccc}1&5&2\\1&1&7\\0&-3&4\end{array}\right]

Applying the row operation,

A = IA

=> \left[\begin{array}{ccc}1&5&2\\1&1&7\\0&-3&4\end{array}\right] = \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] .A

R2 ---> R2 - R1

=> \left[\begin{array}{ccc}1&5&2\\0&-4&5\\0&-3&4\end{array}\right] = \left[\begin{array}{ccc}1&0&0\\-1&1&0\\0&0&1\end{array}\right] .A

R1 ---> R1 - R2

=> \left[\begin{array}{ccc}1&1&7\\0&-4&5\\0&-3&4\end{array}\right] = \left[\begin{array}{ccc}0&1&0\\-1&1&0\\0&0&1\end{array}\right] .A

R2 ---> R2 - R3

=> \left[\begin{array}{ccc}1&1&7\\0&-1&1\\0&-3&4\end{array}\right] = \left[\begin{array}{ccc}0&1&0\\-1&1&-1\\0&0&1\end{array}\right] .A

R1 ---> R1 + R2

=> \left[\begin{array}{ccc}1&0&8\\0&-1&1\\0&-3&4\end{array}\right] = \left[\begin{array}{ccc}-1&2&-1\\-1&1&-1\\0&0&1\end{array}\right] .A

R1 ---> R1 - 2R3

=> \left[\begin{array}{ccc}1&6&0\\0&-1&1\\0&-3&4\end{array}\right] = \left[\begin{array}{ccc}1&0&1\\-1&1&-1\\0&0&1\end{array}\right] .A

R3 ---> R3 - R1/2

=> \left[\begin{array}{ccc}1&6&0\\0&-1&1\\0&0&4\end{array}\right] = \left[\begin{array}{ccc}1&0&1\\-1&1&-1\\1/2&0&1/2\end{array}\right] .A

R2 ---> R2 - R3/4

=> \left[\begin{array}{ccc}1&6&0\\0&-1&1\\0&0&4\end{array}\right] = \left[\begin{array}{ccc}1&0&1\\-1&1&3/4\\1/2&0&1/2\end{array}\right] .A

R1 ---> R1 + R2/6

=> \left[\begin{array}{ccc}1&0&0\\0&-1&1\\0&0&4\end{array}\right] = \left[\begin{array}{ccc}5/6&1/6&9/8\\-1&1&3/4\\1/2&0&1/2\end{array}\right] .A

R2 ---> R2/(-1) and R3 ---> R3/4

=> \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] = \left[\begin{array}{ccc}5/6&1/6&9/8\\1&-1&-3/4\\1/8&0&1/8\end{array}\right] .A


Hence, inverse of the given matrix A i.e, A inverse = \left[\begin{array}{ccc}5/6&1/6&9/8\\1&-1&-3/4\\1/8&0&1/8\end{array}\right]


THANK YOU FOR THE WONDERFUL QUESTION ...

#bebrainly





Haezel: This is great
Anonymous: thanks
keeedawn234p2w5oi: thank u very much but still confused from the middle
keeedawn234p2w5oi: why did u add and substrate it over again... can u pls explain the true meaning of this
keeedawn234p2w5oi: thank u❤️
Similar questions